分析 (1)利用等差數列與等比數列的通項公式即可得出.
(2)利用等差數列與等比數列的求和公式即可得出.
解答 解:(1)設等差數列{an}的公差為d,依題意得a5=a1+4d⇒3+4d=15⇒d=3,所以an=3+3(n-1)=3n.
設等比數列{cn}的公比為q,依題意得c1=b1-a1=4-3=1,c5=b5-a5=31-15=16,
從而${c_5}={c_1}{q^4}⇒16=1×{q^4}⇒q=2$,所以${c_n}=1×{2^{n-1}}={2^{n-1}}$.
(2)因為${c_n}={b_n}-{a_n}⇒{b_n}={a_n}+{c_n}⇒{b_n}=3n+{2^{n-1}}$,所以數列{bn}的前n項和Sn=(3+1)+(6+2)+(9+22)+…+(3n+2n-1)
=(3+6+…+3n)+(1+2+22+…+2n-1)
=$\frac{n(3+3n)}{2}$+$\frac{{2}^{n}-1}{2-1}$
=$\frac{3{n}^{2}+3n}{2}$+2n-1.
點評 本題考查了等差數列與等比數列的通項公式與求和公式、分組求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-2016) | B. | (-2018,-2016) | C. | (-2016,-2) | D. | (-2,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ②①③④ | B. | ②③①④ | C. | ④①③② | D. | ④③①② |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com