過點(diǎn)P(-4,1)且與直線3x-4y+6=0垂直的直線方程是( 。
A、4x-3y-19=0
B、4x+3y+13=0
C、3x-4y-16=0
D、3x+4y-8=0
考點(diǎn):直線的點(diǎn)斜式方程
專題:直線與圓
分析:求出直線的斜率,然后利用點(diǎn)斜式方程求解即可.
解答: 解:直線3x-4y+6=0的斜率為:
3
4

過點(diǎn)P(-4,1)且與直線3x-4y+6=0垂直的直線的斜率為:-
4
3

有點(diǎn)斜式方程可得:y-1=-
4
3
(x+4).即4x+3y+13=0
過點(diǎn)P(-4,1)且與直線3x-4y+6=0垂直的直線方程是4x+3y+13=0.
故選:B.
點(diǎn)評(píng):本題考查直線的垂直的條件的應(yīng)用,點(diǎn)斜式方程的求法,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(0,+∞)上的增函數(shù),f(2)=1,f(xy)=f(x)+f(y).
(1)求證:f(x2)=2f(x);
(2)求f(1)的值;
(3)若f(x)+f(x+3)≤2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sin
ω x
2
cos (
ω x
2
+
π
3
)+
3
(x∈R,ω>0)的最小正周期為4π.
(Ⅰ) 求函數(shù)f(x)的最大值;
(Ⅱ) 若α∈(0,
π
2
),且f(α-
π
2
)=
6
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log0.5(x2-1)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊與單位圓x2+y2=1交于P(
1
2
y0)
,則cos2α等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2(x2+3),x<0
-tanx,0≤x<
π
2
,則f(f(
π
4
))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(1-x)的定義域?yàn)椋ā 。?/div>
A、[0,1]
B、(-1,+∞)
C、[-1,1]
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|y=
3x-x2
},B={y|y=2x,x>1},則A∩B為( 。
A、[0,3]
B、(2,3]
C、[3,+∞)
D、[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在2014-2015賽季的CBA(中國(guó)職業(yè)籃球)常規(guī)賽中,甲、乙兩隊(duì)要進(jìn)行三場(chǎng)比賽,在三場(chǎng)比賽中,甲隊(duì)兩個(gè)主場(chǎng)一個(gè)客場(chǎng),乙隊(duì)一個(gè)主場(chǎng)兩個(gè)客場(chǎng),按以往多年的比賽統(tǒng)計(jì),兩隊(duì)主客場(chǎng)的勝負(fù)概率如下表,按照比賽規(guī)定,每場(chǎng)勝隊(duì)得2分,負(fù)隊(duì)得1分(比賽結(jié)果只有勝負(fù)兩種可能,如果出現(xiàn)平局時(shí)就加時(shí),直至分出勝負(fù)為止),設(shè)甲、乙兩隊(duì)最后所得的總分分別為ξ、η,且ξ+η=9.
主客場(chǎng)甲隊(duì)勝乙隊(duì)勝
甲對(duì)主場(chǎng) 
2
3
 
1
3
乙隊(duì)主場(chǎng) 
1
3
 
2
3
(1)甲隊(duì)得5分的概率;
(2)求ξ的分布列,并用統(tǒng)計(jì)學(xué)知識(shí)說明兩個(gè)隊(duì)的實(shí)力情況.

查看答案和解析>>

同步練習(xí)冊(cè)答案