某人欲設(shè)定一個(gè)密碼,要求如下:密碼由2個(gè)數(shù)字和1個(gè)字母a及1個(gè)字母b組成;這2個(gè)數(shù)字之積為8(數(shù)字從0,1,2,…,9中選。┣襛在b的前面,則不同的密碼種數(shù)有
 
考點(diǎn):排列、組合的實(shí)際應(yīng)用
專(zhuān)題:計(jì)算題,排列組合
分析:先選數(shù)字2,4或1,8,再給它們從4個(gè)位置中選2個(gè)位置排列即可,由分步計(jì)數(shù)原理可得結(jié)論.
解答: 解:先選數(shù)字2,4或1,8,再給它們從4個(gè)位置中選2個(gè)位置排列即可,
由分步計(jì)數(shù)原理可得不同的密碼種數(shù)有
C
1
2
A
2
4
=24.
故答案為:24.
點(diǎn)評(píng):本題考查排列、組合的實(shí)際應(yīng)用,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2,g(x)=2elnx(x>0)(e為自然對(duì)數(shù)的底數(shù)).
(1)求F(x)=f(x)-g(x)(x>0)的單調(diào)區(qū)間及最小值;
(2)是否存在一次函數(shù)y=kx+b(k,b∈R),使得f(x)≥kx+b且g(x)≤kx+b對(duì)一切x>0恒成立?若存在,求出該一次函數(shù)的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年份2007200820092010201120122013
年份代號(hào)t1234567
人均純收入y2.93.33.64.44.85.25.9
(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
b
=
n
i=1
(ti-
.
t
)(yi-
.
y
)
n
i=1
(ti-
.
t
)2
a
=
.
y
-
b
.
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x+a)10的展開(kāi)式中,x7的系數(shù)為15,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在8張獎(jiǎng)券中有一、二、三等獎(jiǎng)各1張,其余5張無(wú)獎(jiǎng).將這8張獎(jiǎng)券分配給4個(gè)人,每人2張,不同的獲獎(jiǎng)情況有
 
種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x2+5x+4|,x≤0
2|x-2|,x>0
,若函數(shù)y=f(x)-a|x|恰有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lgx2的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某三棱錐的三視圖如圖所示,則該三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln(1+x)-ln(1-x),x∈(-1,1).現(xiàn)有下列命題:
①f(-x)=-f(x);
②f(
2x
1+x2
)=2f(x)
③|f(x)|≥2|x|
其中的所有正確命題的序號(hào)是( 。
A、①②③B、②③C、①③D、①②

查看答案和解析>>

同步練習(xí)冊(cè)答案