已知向量數(shù)學(xué)公式=(1,2sinx),數(shù)學(xué)公式=(1,cosx-sinx),函數(shù)f(x)=數(shù)學(xué)公式
(Ⅰ)求函數(shù)y=f(x)的最小值以及取得最小值時(shí)x的值;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

解:f(x)==1+2sinx(cosx-sinx)(2分)
=1-2sin2x+2sinxcosx
=cos2x+sin2x(4分)
=(6分)
(Ⅰ)當(dāng),即x=kπ-,k∈Z時(shí),函數(shù)y=f(x)取最小值,
函數(shù)y=f(x)的最小值是.(9分)
(Ⅱ)當(dāng),即,k∈Z時(shí),函數(shù)y=f(x)單調(diào)遞增,
故函數(shù)y=f(x)的單調(diào)遞增區(qū)間為(k∈Z).(12分)
分析:計(jì)算向量的數(shù)量積,利用二倍角.兩角和的正弦函數(shù)化簡(jiǎn)函數(shù)f(x)的表達(dá)式,得到一個(gè)角的一個(gè)三角函數(shù)的形式;
(Ⅰ)借助正弦函數(shù)的最值,求出函數(shù)y=f(x)的最小值以,取得最小值時(shí)x的值;
(Ⅱ)借助正弦函數(shù)的單調(diào)增區(qū)間,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.
點(diǎn)評(píng):本題考查三角函數(shù)的單調(diào)性,三角函數(shù)的最值,三角函數(shù)的化簡(jiǎn),公式的應(yīng)用,考查計(jì)算能力,基本知識(shí)的靈活運(yùn)應(yīng)能力,考查轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,-1)
,
b
=(
1
2
,
3
2
)

(1)求證:
a
b
;
(2)是否存在最小的常數(shù)k,對(duì)于任意的正數(shù)s,t,使
x
=
a
+(t+2s)
b
y
=-k
a
+(
1
t
+
1
s
)
b
垂直?如果存在,求出k的最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
2
,-
1
2
)
,
b
=(1,
3
)

(Ⅰ)求證
a
b
;
(Ⅱ)如果對(duì)任意的s∈R+,使
m
=
a
+(1+2s)
b
n
=-k
a
+(1+
1
s
)
b
垂直,求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
a
=(
3
,-1)
,
b
=(
1
2
3
2
)

(1)求證:
a
b

(2)是否存在最小的常數(shù)k,對(duì)于任意的正數(shù)s,t,使
x
=
a
+(t+2s)
b
y
=-k
a
+(
1
t
+
1
s
)
b
垂直?如果存在,求出k的最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案