13.如圖,在平面直角坐標(biāo)系xoy中,圓x2+y2=r2(r>0)內(nèi)切于正方形ABCD,任取圓上一點(diǎn)P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),則$\frac{1}{4}$是m2,n2的等差中項,現(xiàn)有一橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)內(nèi)切于矩形ABCD,任取橢圓上一點(diǎn)P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),則m2,n2的等差中項為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

分析 設(shè)出P的坐標(biāo),由$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$把P的坐標(biāo)用含有m,n的代數(shù)式表示,代入橢圓方程得答案.

解答 解:設(shè)P(x,y),則
由題意,$\overrightarrow{OA}$=(a,b),$\overrightarrow{OB}$=(-a,b),
∵$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,
∴(x,y)=(ma,mb)+(-na,nb),
∴x=(m-n)a,y=(m+n)b,
∴$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=$\frac{(m-n)^{2}{a}^{2}}{{a}^{2}}+\frac{(m+n)^{2}^{2}}{^{2}}=1$,
即${m}^{2}+{n}^{2}=\frac{1}{2}$.
故選:B.

點(diǎn)評 本題是新定義題,考查了平面向量的坐標(biāo)運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),則實(shí)數(shù)a=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=lnx+ax有大于1的極值點(diǎn),則a的取值范圍是(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將1~9這9個數(shù)平均分成3組,則每組的3個數(shù)都成等差數(shù)列的分組方法的種數(shù)是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=2sinx+2cosx的值域是[$-2\sqrt{2},2\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知正實(shí)數(shù)a、b滿足a2+b+3=ab,則a+b的最小值為3+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知離心率為$\frac{\sqrt{3}}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線l交橢圓C于不同的兩點(diǎn)A,B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求△AOB面積的最大值;
(3)證明:直線MA、MB與x軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的方程為$\left\{\begin{array}{l}x={t^2}\\ y=2t\end{array}\right.$(t為參數(shù)),直線l的方程為kρcosθ-ρsinθ-k=0(k為實(shí)數(shù)),若直線l交曲線C于A,B兩點(diǎn),F(xiàn)為曲線C的焦點(diǎn),則$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.等差數(shù)列{an}中,a4=6,則2a1-a5+a11=12.

查看答案和解析>>

同步練習(xí)冊答案