已知cos(α+)=,且,則sin2α=   
【答案】分析:把已知的等式利用兩角和的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡后,求出sinα的值,然后由α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,把所求的式子利用二倍角的正弦函數(shù)公式化簡后,將sinα和cosα的值代入即可求出值.
解答:解:由cos(α+)=cosαcos-sinαsin=-sinα=,
得到sinα=-,又,所以cosα==,
則sin2α=2sinαcosα=2×(-)×=-
故答案為:-
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用兩角和與差的正弦、余弦函數(shù)公式化簡求值,靈活運(yùn)用二倍角的正弦函數(shù)公式及同角三角函數(shù)間的基本關(guān)系化簡求值,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
4
+x)=
4
5
,
17π
12
<x<
4
,求
sin2x-2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α-
π
2
)=
3
5
,則sin2α-cos2α的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
4
5
,α∈(π,
2
),求tan(α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)已知cos(x-
π
6
)=-
3
3
,則cosx+cos(x-
π
3
)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知cosα=-
4
5
,求sinα,tanα.
(2)已知tan(π+α)=3,求:
2cos(π-α)-3sin(π+α)
4cos(-α)+sin(2π-α)
的值.

查看答案和解析>>

同步練習(xí)冊答案