【題目】下列命題正確的是(  )
A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行
B.若一個平面內有三個點到另一個平面的距離相等,則這兩個平面平行
C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
D.若兩個平面都垂直于第三個平面,則這兩個平面平行

【答案】C
【解析】A、若兩條直線和同一個平面所成的角相等,則這兩條直線平行、相交或異面,故A錯誤;
B、若一個平面內有三個點到另一個平面的距離相等,則這兩個平面平行或相交,故B錯誤;
C、設平面α∩β=a,l∥α,l∥β,由線面平行的性質定理,在平面α內存在直線b∥l,在平面β內存在直線c∥l,所以由平行公理知b∥c,從而由線面平行的判定定理可證明b∥β,進而由線面平行的性質定理證明得b∥a,從而l∥a,故C正確;
D,若兩個平面都垂直于第三個平面,則這兩個平面平行或相交,排除D.
故選C.
【考點精析】本題主要考查了命題的真假判斷與應用和空間中直線與平面之間的位置關系的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系;直線在平面內—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a=8,b=7,A=45°,則此三角形解的情況是(
A.一解
B.兩解
C.一解或兩解
D.無解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:(k﹣3)x+(5﹣k)y+1=0與l2:2(k﹣3)x﹣2y+3=0垂直,則k的值是(
A.1或3
B.1或5
C.1或4
D.1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U={1,2,3,4},集合A={1,2},B={2,3},則U(A∪B)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+1且f(m)=6,則f(﹣m)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集為R,集合A={x|x2﹣16<0},B={x|﹣2<x≤6},則A∩(RB)等于(
A.(﹣4,0)
B.(﹣4,﹣2]
C.(﹣4,4)
D.(﹣4,﹣2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用1、2、3、4四個數(shù)字可以組成百位上不是3的無重復數(shù)字的三位數(shù)的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|y=lg(x+1)},B={x||x|<2},則A∩B=(
A.(﹣2,0)
B.(0,2)
C.(﹣1,2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四人賽跑,假設其跑過的路程和時間的函數(shù)關系分別是f1x)=x2 , f2x)=4x , f3x)=log2x , f4x)=2x如果他們一直跑下去,最終跑在最前面的人具有的函數(shù)關系是(
A.f1x)=x2
B.f2x)=4x
C.f3x)=log2x
D.f4x)=2x

查看答案和解析>>

同步練習冊答案