【題目】下面個(gè)說(shuō)法中正確的序號(hào)為_____.
①函數(shù)有兩個(gè)零點(diǎn);
②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;
③若是第三象限角,則的取值集合為;
④銳角三角形中一定有;
⑤已知(且),同一平面內(nèi)有、、、四個(gè)不同的點(diǎn),若,則、、必定三點(diǎn)共線.
【答案】②④⑤
【解析】
利用零點(diǎn)存在定理以及可判斷命題①的正誤;求出函數(shù)的對(duì)稱中心坐標(biāo),利用賦值法可判斷命題②的正誤;確定的象限,去絕對(duì)值,求出的取值集合,可判斷命題③的正誤;利用正弦函數(shù)的單調(diào)性可判斷命題④的正誤;計(jì)算出,可判斷命題⑤的正誤.
對(duì)于命題①,,,由零點(diǎn)存在定理知,函數(shù)在區(qū)間上有零點(diǎn),又,則函數(shù)的零點(diǎn)個(gè)數(shù)大于,命題①錯(cuò)誤;
對(duì)于命題②,令,解得,
令,可得,所以,函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,命題②正確;
對(duì)于命題③,如下圖所示:
由于角為第三象限角,由等分象限法知,角是第二象限或第四象限角.
若角是第二象限角,,,;
若角是第四象限角,,,.
命題③錯(cuò)誤;
對(duì)于命題④,由于是銳角三角形,則,所以,即,
因?yàn)檎液瘮?shù)在區(qū)間上為增函數(shù),所以,,命題④正確;
對(duì)于命題⑤,,則,
,
,、、三點(diǎn)共線,命題⑤正確.
因此,正確說(shuō)法的序號(hào)為:②④⑤.
故答案為:②④⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱函數(shù)f(x)是區(qū)間D上的“H函數(shù)”.對(duì)于命題:
①函數(shù)f(x)=-x+是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( 。
A. 和均為真命題 B. 為真命題,為假命題
C. 為假命題,為真命題 D. 和均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17.5歲~18歲的男生體重(kg),得到頻率分布直方圖如下:求:
(1)根據(jù)直方圖可得這100名學(xué)生中體重在(56,64)的學(xué)生人數(shù).
(2)請(qǐng)根據(jù)上面的頻率分布直方圖估計(jì)該地區(qū)17.5-18歲的男生體重.
(3)若在這100名男生中隨意抽取1人,該生體重低于62的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求經(jīng)過(guò)點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等的直線方程.
(2)設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2,求圓C的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生考試時(shí)的緊張程度,現(xiàn)對(duì)100名同學(xué)進(jìn)行評(píng)估,打分區(qū)間為,得到頻率分布直方圖如下,其中成等差數(shù)列,且.
(1)求的值;
(2)現(xiàn)采用分層抽樣的方式從緊張度值在,中共抽取5名同學(xué),再?gòu)倪@5名同學(xué)中隨機(jī)抽取2人,求至少有一名同學(xué)是緊張度值在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司每年生產(chǎn)、銷(xiāo)售某種產(chǎn)品的成本包含廣告費(fèi)用支出和浮動(dòng)成本兩部分,該產(chǎn)品的年產(chǎn)量為萬(wàn)件,每年投入的廣告費(fèi)為萬(wàn)元,另外,當(dāng)年產(chǎn)量不超過(guò)萬(wàn)件時(shí),浮動(dòng)成本為萬(wàn)元,當(dāng)年產(chǎn)量超過(guò)萬(wàn)件時(shí),浮動(dòng)成本為萬(wàn)元.若每萬(wàn)件該產(chǎn)品銷(xiāo)售價(jià)格為萬(wàn)元,且每年該產(chǎn)品都能銷(xiāo)售完.
(1)設(shè)年利潤(rùn)為(萬(wàn)元),試求關(guān)于的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬(wàn)件時(shí),該公司所獲利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)若,,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè).
(i)若函數(shù)有極值,求實(shí)數(shù)的取值范圍;
(ii)若(),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,,,,,,分別在,上,,現(xiàn)將四邊形沿折起,使平面平面.
(Ⅰ)若,在折疊后的線段上是否存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說(shuō)明理由;
(Ⅱ)求三棱錐的體積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com