如圖,中,側(cè)棱與底面垂直,,,點(diǎn)分別為和的中點(diǎn).
(1)證明:;
(2)求二面角的正弦值.
(1)利用線線平行證明線面平行;(2)利用定義法或向量法求二面角
【解析】
試題分析:
(1)證法一: 連接 1分
由題意知,點(diǎn)分別為和的中點(diǎn),
. 3分
又平面,平面, 5分
平面. 6分
證法二:取中點(diǎn),連,而 分別為與的中點(diǎn),
, 2分
,, ,
同理可證 4分
又 平面//平面. 5分
平面,平面. 6分
證法三(向量法):以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線
為軸, 軸, 軸建立空間直角坐標(biāo)系,如圖所示.
于是
,,
向量是 平面的一個(gè)法向量 2分
, 4分
又 5分
平面. 6分
(2)解法一: 以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線
為軸, 軸, 軸建立空間直角坐標(biāo)系,如圖所示.
于是,, 8分
由(1)知是平面的一個(gè)法向量, . 10分
設(shè)平面的法向量為,,,
,
12分
設(shè)向量和向量的夾 角為,則
13分
二面角的的正弦值為 14分
解法二(幾何法):如圖,將幾何體補(bǔ)形成一 個(gè)正方體,連交于點(diǎn),連,
顯然,,都在同一平面上.…………7分
易證,,
平面,平面,
,又
平面.
取中點(diǎn),連,
分別是的中點(diǎn)
,
平面, …………9分
且為垂足,即平 面,過(guò)點(diǎn)作于,
過(guò)作交于,連,
則即是所求二面角的補(bǔ)角. …………11分
在中,,
,,
在中,,
又
在中,, …………12分
. …………13分
所求二面角的正弦值為 …………14分
考點(diǎn):本題考查了空間中的線面關(guān)系
點(diǎn)評(píng):高考中對(duì)立體幾何解答題的考查一般都體現(xiàn)為一題兩法(同一題兩種解法:傳統(tǒng)法與向量法).而運(yùn)用向量在解決立體幾何問(wèn)題主要集中在法向量的應(yīng)用上,它可以證明空間線面的位置關(guān)系、求解空間角、距離.同時(shí)運(yùn)用空間向量解答立體幾何問(wèn)題,淡化了傳統(tǒng)立體幾何中的“形”的推理方法,強(qiáng)化了代數(shù)運(yùn)算,從而降低了思維難度,且思路明確,過(guò)程較為程序化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com