【題目】設(shè)平面直角坐標系中,設(shè)二次函數(shù)的圖象與兩坐標軸有三個交點,經(jīng)過這三個交點的圓記為C.求:

)求實數(shù)b 的取值范圍;

)求圓C 的方程;

【答案】b1 b0.(.

【解析】本小題主要考查二次函數(shù)圖象與性質(zhì)、圓的方程的求法.

(1)0,得拋物線與軸交點是(0,b);令,

由題意b0 Δ0,解得b1 b0

(II)設(shè)所求圓的一般方程為:,令y=0,得,

根據(jù)它與0 是同解方程,可得D,F(xiàn)的值,再根據(jù)0 0,此方程有一個根為b,代入得出Eb1.從而可求出圓C的方程.

)令0,得拋物線與軸交點是(0,b);令,

由題意b0 Δ0,解得b1 b0

)設(shè)所求圓的一般方程為:,

0

這與0 是同一個方程,

D=2,F(xiàn)=

0 0,此方程有一個根為b,代入得出Eb1

所以圓C 的方程為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年高考總成績由語數(shù)外三門統(tǒng)考科目和物理、化學(xué)等六門選考科目組成,將每門選考科目的考生原始成績從高到低劃分為、、8個等級,參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%16%、24%24%、16%7%、3%,選考科目成績計入考生總成績時,將AE等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、,八個分數(shù)區(qū)間,得到考生的等級成績.某市高一學(xué)生共6000人,為給高一學(xué)生合理選科提供依據(jù),對六門選考科目進行測試,其中化學(xué)考試原始成績大致服從正態(tài)分布

1)求該市化學(xué)原始成績在區(qū)間的人數(shù);

2)以各等級人數(shù)所占比例作為各分數(shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間的人數(shù),求

(附:若隨機變量,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個自然數(shù)隨機地排列在的正方形方格內(nèi),對于同一行或同一列中的任意兩個數(shù),計算較大數(shù)與較小數(shù)的商,得到個分數(shù).把最小的分數(shù)稱之為這種排列的“特征值”.試求特征值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,1213553等.顯然2位“回文數(shù)”共9個:11,2233,…,99.現(xiàn)從9個不同2位“回文數(shù)”中任取1個乘以4,其結(jié)果記為X;從9個不同2位“回文數(shù)”中任取2個相加,其結(jié)果記為Y

1)求X為“回文數(shù)”的概率;

2)設(shè)隨機變量表示X,Y兩數(shù)中“回文數(shù)”的個數(shù),求的概率分布和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為不同的兩點,直線,下列命題正確的有( ).

①不論為何值,點都不在直線上;

②若,則過點的直線與直線平行;

③若,則直線經(jīng)過的中點;

④若,則點在直線的同側(cè)且直線與線段的延長線相交.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右頂點,離心率為,為坐標原點.

)求橢圓的方程;

)已知(異于點)為橢圓上一個動點,過作線段的垂線交橢圓于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的類比過程。

(1)在一維直線上,線段是一個封閉的中心對稱圖形,有命題1:不重合的兩點決定一條線段;

(2)在二維平面上,圓是一個封閉的中心對稱圖形,有命題2:不共線的三點決定一個圓;

(3)在三維空間中,球是一個封閉的中心對稱圖形,類比猜想:不共面的四點決定一個球。

證明或否定這個類比猜想:不共面的四點決定一個球。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點CtR,t0)為圓心的圓與x軸交于點O和點A,與y軸交于點O和點B,其中O為原點.

1)求證:OAB的面積為定值;

2)設(shè)直線y=-2x4與圓C交于點M,N,若OMON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分).以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標系xOy(如圖所示).景觀湖的邊界曲線符合函數(shù)模型.園區(qū)服務(wù)中心P在x軸正半軸上,PO=百米.

(1)若在點O和景觀湖邊界曲線上一點M之間修建一條休閑長廊OM,求OM的最短長度;

(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道直線段PQ最短.

查看答案和解析>>

同步練習(xí)冊答案