已知A.B是橢圓上兩點,O是坐標(biāo)原點,定點,向量在向量方向上的投影分別是m.n ,且7mn ,動點P滿足
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)設(shè)過點E的直線l與C交于兩個不同的點M.N,求的取值范圍。
(1)(2)
(Ⅰ)設(shè) .
,,                  ———————2分
∵向量在向量方向上的投影分別是m.n,且,∴m=,n=
由于7mn ,所以,即 .

∴點P的軌跡C的方程是。                                                ———————6分
(Ⅱ)∵點P的軌跡C的方程是,∴軸時,l與C沒有交點,———————7分
∵可設(shè)l:,再設(shè),∴.              —8分
,∴,解得,
且有,.                                                      ———————11分

,
的取值范圍是                                                                         ———————14分


權(quán)

 

權(quán)
 


 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,F(xiàn)為橢圓在x軸正半軸上的焦點,M、N兩點在橢圓C上,且,定點A(-4,0).
(1)求證:當(dāng)時.,;
(2)若當(dāng)時有,求橢圓C的方程;
(3)在(2)的條件下,當(dāng)M、N兩點在橢圓C運動時,當(dāng) 的值為6時, 求出直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點,若在其右準(zhǔn)線上存在點
使得線段的垂直平分線恰好經(jīng)過,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在y軸上,離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點F是橢圓在y軸正半軸上的一個焦點,點A,B是拋物線上的兩個動點,且滿足,過點A,B分別作拋物線的兩條切線,設(shè)兩切線的交點為M,試推斷是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)向量a=(x+1,y),b=(x-1,y),點P(x,y)為動點,已知|a|+|b|=4.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)點P的軌跡與x軸負(fù)半軸交于點A,過點F(1,0)的直線交點P的軌跡于B、C兩點,試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知長方形ABCD, AB=2, BC="1." 以AB的中點為原點建立如圖8所示的平面直角坐標(biāo)系.
(Ⅰ)求以A、B為焦點,且過C、D兩點的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P(0,2)的直線交(Ⅰ)中橢圓于M,N兩點,是否存在直線,使得以弦MN為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓上的一點P到兩焦點的距離的乘積為m,則當(dāng)m取最大值時,點P的坐標(biāo)是_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不論k為何實數(shù),直線y=kx+b與橢圓+=1總有公共點,則b的取值范圍是(   )
A.(-5,5)B.[-5,5)C.[-5,5]D.[-5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知方程表示的曲線是焦點在y軸上且離心率為的橢圓,則m   .

查看答案和解析>>

同步練習(xí)冊答案