某企業(yè)生產(chǎn)某種商品噸,此時所需生產(chǎn)費用為()萬元,當(dāng)出售這種商品時,每噸價格為萬元,這里為常數(shù),
(1)為了使這種商品的生產(chǎn)費用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?
(2)如果生產(chǎn)出來的商品能全部賣完,當(dāng)產(chǎn)量是120噸時企業(yè)利潤最大,此時出售價格是每噸160萬元,求的值.

(1)100噸;(2)

解析試題分析:這是函數(shù)應(yīng)用題問題,解決問題的方法是列出函數(shù)關(guān)系式,然后借助函數(shù)的性質(zhì)得出結(jié)論.這種問題的函數(shù)式其實在題中已經(jīng)有提示,我們只要充分利用題目提供的信息,就可以得到解法.顯然本題要建立生產(chǎn)商品的平均費用與商品產(chǎn)量之間的函數(shù)式,已知條件是生產(chǎn)某種商品噸,此時所需生產(chǎn)費用為()萬元,因此平均費用就是,這就是所求函數(shù)式;(2)當(dāng)產(chǎn)量是120噸時企業(yè)利潤最大,解決這個問題要建立利潤與產(chǎn)量之間的函數(shù)式,從實際出發(fā),我們知道利潤等于收入減去成本,因此此題中利潤,這是關(guān)于的二次函數(shù),已知條件轉(zhuǎn)化為當(dāng)時,最大,且此時銷售單價,故問題得解.
試題解析:(1)設(shè)生產(chǎn)平均費用為y元,(1分)
由題意可知y=;(5分)
當(dāng)且僅當(dāng)時等號成立,(6分)
所以這種商品的產(chǎn)量應(yīng)為100噸.(7分)
(2)設(shè)企業(yè)的利潤為S元,有題意可知(7分)

= (3分)
 又由題意可知120 (5分)
(6分)
        (7分)
考點:函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為常數(shù).
(1)若函數(shù)在區(qū)間上單調(diào),求的取值范圍;
(2)若對任意,都有成立,且函數(shù)的圖象經(jīng)過點,
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點;
(3)若函數(shù)的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴大該商品的影響力,提高年銷售量.公司決定明年對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源消耗,房屋的屋頂和外墻需要建造隔熱層,某棟建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:)滿足關(guān)系:
若不建隔熱層,每年能源消耗費用為8萬元。設(shè)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求的值及的表達式;
(Ⅱ)隔熱層修建多厚時,總費用最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,
(1)求的最大值;
(2)求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本)。銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
分別寫出和利潤函數(shù)的解析式(利潤=銷售收入—總成本);
工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?并求出此時每臺產(chǎn)品的售價。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,且的解集為.
(Ⅰ)求的值;
(Ⅱ)若,且,求證:

查看答案和解析>>

同步練習(xí)冊答案