如圖甲,設正方形的邊長為,點分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點
平面上的射影恰好在上.

(1)證明:平面;
(2)求平面與平面所成二面角的余弦值.

(1)先證(2)

解析試題分析:⑴證明:在圖甲中,易知,從而在圖乙中有,           
因為平面平面,所以平面
⑵解法1、
如圖,在圖乙中作,垂足為,連接
由于平面,則,                      
所以平面,則,                      
所以平面與平面所成二面角的平面角,     
圖甲中有,又,則三點共線,     
的中點為,則,易證,所以,,;
又由,得,            
于是,,                                
中,,即所求二面角的余弦值為


解法2、
如圖,在圖乙中作,垂足為,連接,由于平面,則,                                                
所以平面,則,圖甲中有,又,則三點共線,                                                     
的中點為,則,易證,所以,則;
又由,得,               
于是,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形, ,分別為的中點,且.

(1)求證: ;
(2)求異面直線所成的角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正方體, 是底對角線的交點.

求證:(Ⅰ)∥面;
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形是正方形,為對角線的交點,,的中點;

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,,點在棱上.

(Ⅰ)  求證:平面平面;
(Ⅱ)  當,且時,確定點的位置,即求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點.

(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大;
(3)求多面體ABC—FDE的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P­ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)證明:PABD;(2)設PDAD,求二面角APBC的余弦值.  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個多面體的直觀圖和三視圖如圖所示,其中分別是,的中點.
(1)求證:平面;
(2)在線段上(含端點)確定一點,使得∥平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當?shù)淖鴺讼担懗鳇cP、B、D的坐標;
(2)問當實數(shù)a在什么范圍時,BC邊上能存在點Q,使得PQ⊥QD?
(3)當BC邊上有且僅有一個點Q使得PQ⊥QD時,求二面角Q-PD-A的大小.

查看答案和解析>>

同步練習冊答案