【題目】如圖,已知是中的角平分線,交邊于點(diǎn).
(1)用正弦定理證明: ;
(2)若, , ,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2) .
【解析】試題分析:(1)根據(jù)是的角平分線,利用正弦定理、三角形內(nèi)角和定理及誘導(dǎo)公式,即可證明結(jié)論成立;(2)根據(jù)余弦定理,先求出的值,再利用角平分線和余弦定理,即可求出的長(zhǎng).
試題解析:(1)∵AD是∠BAC的角平分線,∴∠BAD=∠CAD
根據(jù)正弦定理,在△ABD中,=
在△ADC中,=
∵sin∠ADB=sin(π﹣∠ADC)=sin∠ADC
∴=,=
∴=
(2)根據(jù)余弦定理,cos∠BAC=
即cos120°=
解得BC=
又=
∴=,
解得CD=,BD=;
設(shè)AD=x,則在△ABD與△ADC中,
根據(jù)余弦定理得,
cos60°=
且cos60°=
解得x=,即AD的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn),兩點(diǎn),且圓心C在直線上.
(1)求圓C的方程;
(2)設(shè),對(duì)圓C上任意一點(diǎn)P,在直線MC上是否存在與點(diǎn)M不重合的點(diǎn)N,使是常數(shù),若存在,求出點(diǎn)N坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半期考試后,班長(zhǎng)小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績(jī),繪制頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)成績(jī)的眾數(shù);
(2)用分層抽樣的方法從成績(jī)低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績(jī)均在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)生小王和小張即將參加實(shí)習(xí),他們各從“崇尚科學(xué),關(guān)心社會(huì)”的荊州市荊州中學(xué)、“安學(xué)、親師、樂(lè)友、信道”的荊門市龍泉中學(xué)、“崇尚科學(xué),追求真理”的荊門市鐘祥一中、“追求卓越,崇尚一流”的襄陽(yáng)市第四中學(xué)、“文明、振奮、務(wù)實(shí)、創(chuàng)新”的襄陽(yáng)市第五中學(xué)、“千年文脈,百年一中”的宜昌市第一中學(xué)、“人走三峽,書(shū)讀夷陵”的宜昌市夷陵中學(xué)這七所省重點(diǎn)中學(xué)中隨機(jī)選擇一所參加實(shí)習(xí),兩人可選同一所或者兩所不同的學(xué)校,假設(shè)他們選擇哪所學(xué)校是等可能的,則他們?cè)谕粋(gè)市參加實(shí)習(xí)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:①邊長(zhǎng)為1的正四面體的內(nèi)切球半徑為;
②正方體的內(nèi)切球、棱切球(正方體的每條棱都與球相切)、外接球的半徑之比為1:;
③棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的內(nèi)切球被平面A1BD截得的截面面積為.
其中正確命題的序號(hào)是______(請(qǐng)?zhí)钏姓_命題的序號(hào));
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線方程為.
(1)求以定點(diǎn)為中點(diǎn)的弦所在的直線方程;
(2)以定點(diǎn)為中點(diǎn)的弦存在嗎?若存在,求出其所在的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的是( )
A.在中,,
B.在銳角中,不等式恒成立
C.在中,若,則必是等腰直角三角形
D.在中,若,,則必是等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(1)求實(shí)數(shù)的值,并指出函數(shù)的定義域;
(2)將函數(shù)圖象上的所有點(diǎn)向右平行移動(dòng)1個(gè)單位得到函數(shù)的圖象,寫出函數(shù)的表達(dá)式;
(3)對(duì)于(2)中的,關(guān)于的函數(shù)在上的最小值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)(2,5),(﹣2,1)兩點(diǎn),并且圓心在直線yx上.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求圓上的點(diǎn)到直線3x﹣4y+23=0的最小距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com