雙曲線數(shù)學(xué)公式的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).以F為圓心,F(xiàn)O為半徑的圓與此雙曲線的兩條漸近線分別交于點(diǎn)A,B (不同于O 點(diǎn)),則|AB|=?________.

2
分析:先求出圓的方程,與漸近線方程聯(lián)立求出點(diǎn)A的坐標(biāo)以及點(diǎn)B的坐標(biāo),進(jìn)而求出結(jié)論.
解答:由題得:F(2,0)
故以F為圓心,F(xiàn)O為半徑的圓的方程為:(x-2)2+y2=4;
其中一條漸近線方程為;y=x=x,
聯(lián)立?x2-x=0?x=1或x=0(舍);
所以:A(1,);
同理得:B(1,-);
∴|AB|=2
故答案為:2
點(diǎn)評(píng):本題主要考察雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用以及直線與圓相交的應(yīng)用.解決本題的關(guān)鍵在于求出以F為圓心,F(xiàn)O為半徑的圓的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為F(3,0),且以直線x=1為右準(zhǔn)線.求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•昆明模擬)已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線C:y=x2+1相切于第一象限內(nèi)的點(diǎn)P.
(I)求點(diǎn)P的坐標(biāo)及雙曲線E的離心率;
(II)記過(guò)點(diǎn)P的漸近線為l1,雙曲線的右焦點(diǎn)為F,過(guò)點(diǎn)F且垂直于l1的直線l2與雙曲線E交于A、B兩點(diǎn).若l2與拋物線至多有一個(gè)公共點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為F,過(guò)F作雙曲線一條漸近線的垂線,垂足為A,過(guò)A作x軸的垂線,B為垂足,且
OF
=3
OB
(O為原點(diǎn)),則此雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•昆明模擬)已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線C:y=x2+1相切于第一象限內(nèi)的點(diǎn)P.
(I)求點(diǎn)P的坐標(biāo)及雙曲線E的離心率;
(II)記過(guò)點(diǎn)P的漸近線為l1,雙曲線的右焦點(diǎn)為F,過(guò)點(diǎn)F且垂直于l1的直線l2與雙曲線E交于A、B兩點(diǎn).當(dāng)△PAB的面積為
40
3
時(shí),求雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年內(nèi)蒙古高三第一次模擬考試數(shù)學(xué)理卷 題型:選擇題

已知雙曲線的右焦點(diǎn)為F,P是右支上任意一點(diǎn),以P為圓心,PF長(zhǎng)為半徑的圓在右準(zhǔn)線上截得的弦長(zhǎng)恰好等于,則的值為(  )                            

A.           B.            C.         D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案