【題目】某試驗田分別種植了甲乙兩種水稻,為了研究這兩種水稻的產(chǎn)量,抽檢了甲、乙兩種水稻的谷穗各1000株.經(jīng)統(tǒng)計,得到每株谷穗的粒數(shù)的頻率分布直方圖如圖:

(Ⅰ)求乙種水稻谷穗的粒數(shù)落在[325,375)之間的頻率,并將頻率分布直方圖補齊;
(Ⅱ)試根據(jù)頻率分布直方圖估計甲種水稻谷穗粒數(shù)的中位數(shù)與平均數(shù)(精確到0.1);
(Ⅲ)根據(jù)頻率分布直方圖,請至少從兩方面對甲乙兩種水稻谷穗的粒數(shù)作出評價.

【答案】解:(Ⅰ)乙種水稻谷穗的粒數(shù)落在[325,375)之間的頻率為1﹣50×(0.002+0.004+0.008+0.002)=0.2,
頻率分布直方圖如圖所示.

(Ⅱ)設中位數(shù)估計值為x,則有 50×(0.004+0.002)+(x﹣275)×0.006=0.5,解得x=308.3
由直方圖得平均數(shù)的估計值為50×0.004×200+50×0.002×250+50×0.006×300+50×0.003×350+50×0.005×400=307.5,
答:中位數(shù)和平均數(shù)的估計值分別為308.3和307.5,
(Ⅲ)由于乙稻谷谷穗粒數(shù)平均值的估計值為300<307.5
故可得出結論:乙稻谷谷穗粒數(shù)總體上少于甲種水稻,又從頻率分布直方圖可看出乙稻谷谷穗粒數(shù)比甲種水稻要整齊.
【解析】(I)根據(jù)頻率分布直方圖的小矩形的面積和為1,可求落在[325,375)內的頻率,利用組距為50,求出小矩形的高;
(II)根據(jù)中位數(shù)的左右兩邊小矩形的面積和相等,求得從左開始面積和為0.5的小矩形底邊橫坐標值,即為中位數(shù);計算各個小矩形的底邊中間值乘以其面積之和,即為數(shù)據(jù)的平均數(shù);
(III)根據(jù)甲、乙兩種水稻谷粒的平均數(shù)大小和頻率分布情況說明.
【考點精析】本題主要考查了用樣本的數(shù)字特征估計總體的數(shù)字特征的相關知識點,需要掌握用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差.在隨機抽樣中,這種偏差是不可避免的才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017江西師范大學附屬中學三模已知函數(shù)是自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調區(qū)間;

(2)若,當時,求函數(shù)的最大值;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):

P(k2>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.83

x

2

4

5

6

8

y

30

40

60

50

70

(Ⅰ)畫出散點圖;
(Ⅱ)求回歸直線方程;
(Ⅲ)試預測廣告費支出為10萬元時,銷售額多大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是2008年北京奧運會上,七位評委為某奧運項目打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)為 ;方差為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(選修4—4;坐標系與參數(shù)方程)已知曲線的極坐標方程是,曲線經(jīng)過平移變換得到曲線;以極點為原點,極軸為軸正方向建立平面直角坐標系,直線l的參數(shù)方程是 (為參數(shù)).

(1)求曲線, 的直角坐標方程;

(2)設直線l與曲線交于、兩點,點的直角坐標為(2,1),若,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)證明: ,直線都不是曲線的切線;

(Ⅱ)若,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等級如下表:

質量指標值

等級

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定?

(Ⅱ)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(Ⅲ)該企業(yè)為提高產(chǎn)品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產(chǎn)品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校研究性學習小組對該校高三學生視力情況進行調查,在高三的全體名學生中隨機抽取了名學生的體檢表,并得到如圖的頻率分布直方圖.

年級名次

是否近視

近視

不近視

(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在以下的人數(shù);

(2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在名和名的學生進行了調查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下認為視力與學習成績有關系?

(3)在(Ⅱ)中調查的名學生中,按照分層抽樣在不近視的學生中抽取了人,進一步調查他們良好的護眼習慣,并且在這人中任取人,記名次在的學生人數(shù)為,求的分布列和數(shù)學期望.

7.879

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時期趙爽在《勾股方圓圖注》中對勾股定理的證明可用現(xiàn)代數(shù)學表述為如圖所示,我們教材中利用該圖作為“( )”的幾何解釋.

A.如果a>b,b>c,那么a>c
B.如果a>b>0,那么a2>b2
C.對任意實數(shù)a和b,有a2+b2≥2ab,當且僅當a=b時等號成立
D.如果a>b,c>0那么ac>bc

查看答案和解析>>

同步練習冊答案