求證:三角形的三個內(nèi)角中至少有一個內(nèi)角不大于60°

答案:
解析:

  證明:因為在△ABC中,三個內(nèi)角分別為A,B,C,所以

  若假設(shè)三個角都大于60°,

  即,,

  則,與矛盾.

  故假設(shè)錯誤.

  因此,三角形的三個內(nèi)角中,至少有一個內(nèi)角不大于60°.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=8ln(1+ex)-9x.
(1)證明:函數(shù)f(x)對于定義域內(nèi)任意x1,x2(x1≠x2)都有:f(
x1+x2
2
)<
f(x1)+f(x2)
2
成立.
(2)已知△ABC的三個頂點A、B、C都在函數(shù)y=f(x)的圖象上,且橫坐標依次成等差數(shù)列,求證:△ABC是鈍角三角形,但不可能是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省溫州市高二第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在ABC中,C=90°,AC=b, BC=a, P為三角形內(nèi)的一點,且,

(Ⅰ)建立適當(dāng)?shù)淖鴺讼登蟪鯬的坐標;

(Ⅱ)求證:│PA│2+│PB│2=5│PC│

(Ⅲ)若a+2b=2,求以PA,PB,PC分別為直徑的三個圓的面積之和的最小值,并求出此時的b值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西師大附中高三理科數(shù)學(xué)月考試卷 題型:解答題

(本小題滿分14分)已知函數(shù).

(1)證明:函數(shù) 對于定義域內(nèi)任意都有:成立.

(2)已知的三個頂點、、都在函數(shù)的圖象上,且橫坐標依次成等差數(shù)列,求證:是鈍角三角形,但不可能是等腰三角形.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=8ln(1+ex)-9x.
(1)證明:函數(shù)f(x)對于定義域內(nèi)任意x1,x2(x1≠x2)都有:f(
x1+x2
2
)<
f(x1)+f(x2)
2
成立.
(2)已知△ABC的三個頂點A、B、C都在函數(shù)y=f(x)的圖象上,且橫坐標依次成等差數(shù)列,求證:△ABC是鈍角三角形,但不可能是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西師大附中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=8ln(1+ex)-9x.
(1)證明:函數(shù)f(x)對于定義域內(nèi)任意x1,x2(x1≠x2)都有:成立.
(2)已知△ABC的三個頂點A、B、C都在函數(shù)y=f(x)的圖象上,且橫坐標依次成等差數(shù)列,求證:△ABC是鈍角三角形,但不可能是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案