設(shè)直線(xiàn)3x+4y-5=0與圓C1:x2+y2=4交于A(yíng),B兩點(diǎn),若圓C2的圓心在線(xiàn)段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧
AB
上,則圓C2的半徑的最大值是
 
分析:先根據(jù)圓C1的方程找出圓心坐標(biāo)與半徑R的值,找出圓C2的半徑的最大時(shí)的情況:當(dāng)圓c2的圓心Q為線(xiàn)段AB的中點(diǎn)時(shí),圓c2與圓C1相切,切點(diǎn)在圓C1的劣弧
AB
上,設(shè)切點(diǎn)為P,此時(shí)圓C2的半徑r的最大.求r的方法是,聯(lián)立直線(xiàn)與圓的方程,消去y后得到關(guān)于x的一元二次方程,利用韋達(dá)定理求出Q的橫坐標(biāo),把Q的橫坐標(biāo)代入直線(xiàn)方程即可求出Q的縱坐標(biāo),得到Q的坐標(biāo),利用兩點(diǎn)間的距離公式求出兩圓心的距離OQ等于d,然后根據(jù)兩圓內(nèi)切時(shí),兩圓心之間的距離等于兩半徑相減可得圓C2的半徑最大值.
解答:精英家教網(wǎng)解:由圓C1:x2+y2=4,可得圓心O(0,0),半徑R=2
如圖,當(dāng)圓c2的圓心Q為線(xiàn)段AB的中點(diǎn)時(shí),圓c2與圓C1相切,切點(diǎn)在圓C1的劣弧
AB
上,設(shè)切點(diǎn)為P,此時(shí)圓C2的半徑r的最大.
聯(lián)立直線(xiàn)與圓的方程得
3x+4y-5=0
x2+y2=4
,消去y得到25x2-30x-39=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=
6
5
,所以線(xiàn)段AB的中點(diǎn)Q的橫坐標(biāo)為
3
5
,把x=
3
5
代入直線(xiàn)方程中解得y=
4
5
,
所以Q(
3
5
4
5
),則兩圓心之間的距離OQ=d=
(
3
5
)
2
+(
4
5
)
2
=1,
因?yàn)閮蓤A內(nèi)切,所以圓c2的最大半徑r=R-d=2-1=1
故答案為:1
點(diǎn)評(píng):此題考查學(xué)生掌握兩圓內(nèi)切時(shí)兩半徑所滿(mǎn)足的條件,靈活運(yùn)用韋達(dá)定理及兩點(diǎn)間的距離公式化簡(jiǎn)求值,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線(xiàn)3x+4y-5=0的傾斜角為θ,則該直線(xiàn)關(guān)于直線(xiàn)x=a(a∈R)對(duì)稱(chēng)的直線(xiàn)的傾斜角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線(xiàn)3x+4y-5=0的斜率為θ,則它關(guān)于直線(xiàn)y=3對(duì)稱(chēng)的直線(xiàn)的傾斜角是(    )

A.θ          B.-θ                C.π-θ        D.π+θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年江蘇省揚(yáng)州中學(xué)高三(下)2月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)直線(xiàn)3x+4y-5=0的傾斜角為θ,則該直線(xiàn)關(guān)于直線(xiàn)x=a(a∈R)對(duì)稱(chēng)的直線(xiàn)的傾斜角為( )
A.
B.
C.2π-θ
D.π-θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南師大附中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:填空題

設(shè)直線(xiàn)3x+4y-5=0與圓C1:x2+y2=4交于A(yíng),B兩點(diǎn),若圓C2的圓心在線(xiàn)段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧上,則圓C2的半徑的最大值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案