【題目】已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n1 , 求數(shù)列{an}的前n項(xiàng)和Sn

【答案】
(1)解:∵anbn+1﹣an+1bn+2bn+1bn=0,cn= ,

∴cn﹣cn+1+2=0,

∴cn+1﹣cn=2,

∵首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn},

∴數(shù)列{cn}是以1為首項(xiàng),2為公差的等差數(shù)列,

∴cn=2n﹣1


(2)解:∵bn=3n1,cn= ,

∴an=(2n﹣1)3n1

∴Sn=1×30+3×31+…+(2n﹣1)×3n1,

∴3Sn=1×3+3×32+…+(2n﹣1)×3n

∴﹣2Sn=1+2(31+…+3n1)﹣(2n﹣1)3n,

∴Sn=(n﹣1)3n+1


【解析】(1)由anbn+1﹣an+1bn+2bn+1bn=0,cn= ,可得數(shù)列{cn}是以1為首項(xiàng),2為公差的等差數(shù)列,即可求數(shù)列{cn}的通項(xiàng)公式;(2)用錯(cuò)位相減法來求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)﹣b有兩個(gè)零點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次耐力和體能測(cè)試之后,某校對(duì)其甲、乙、丙、丁四位學(xué)生的耐力成績()和體能成績()進(jìn)行回歸分析,求得回歸直線方程為.由于某種原因,成績表(如下表所示)中缺失了乙的耐力和體能成績.

耐力成績(X)

7.5

m

8

8.5

體能成績(Y)

8

n

8.5

9.5

綜合素質(zhì)

15.5

16

16.5

18

(Ⅰ)請(qǐng)?jiān)O(shè)法還原乙的耐力成績和體能成績;

(Ⅱ)在區(qū)域性校際學(xué)生身體綜合素質(zhì)比賽中,由甲、乙、丙、丁四位學(xué)生組成學(xué)校代表隊(duì)參賽.共舉行3場(chǎng)比賽,每場(chǎng)比賽均由賽事主辦方從學(xué)校代表中隨機(jī)抽兩人參賽,每場(chǎng)比賽所抽的選手中,只要有一名選手的綜合素質(zhì)分高于16分,就能為所在學(xué)校贏得一枚榮譽(yù)獎(jiǎng)?wù)拢粲洷荣愔汹A得榮譽(yù)獎(jiǎng)?wù)碌拿稊?shù)為,試根據(jù)上表所提供數(shù)據(jù),預(yù)測(cè)該校所獲獎(jiǎng)?wù)聰?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x2+ax﹣lnx(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a>1時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)若對(duì)任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位有50名職工,現(xiàn)要從中抽取 10名職工,將全體職工隨機(jī)按1~50編號(hào),并按編號(hào)順序平均分成10組,按各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.

(Ⅰ)若第5組抽出的號(hào)碼為22,寫出所有被抽出職工的號(hào)碼;

(Ⅱ)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的平均數(shù)、中位數(shù)和方差;

(Ⅲ)在(Ⅱ)的條件下,從這10名職工中隨機(jī)抽取兩名體重不輕于73公斤(73公斤)的職工,求體重為81公斤的職工被抽取到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)內(nèi)取到一個(gè)最大值和一個(gè)最小值,且當(dāng)x=π時(shí),y有最大值3,當(dāng)x=6π時(shí),y有最小值﹣3.
(1)求此函數(shù)解析式;
(2)寫出該函數(shù)的單調(diào)遞增區(qū)間;
(3)是否存在實(shí)數(shù)m,滿足不等式Asin( )>Asin( )?若存在,求出m值(或范圍),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程fi(x)(i=1,2,3,4)關(guān)于時(shí)間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論:
①當(dāng)x>1時(shí),甲走在最前面;
②當(dāng)x>1時(shí),乙走在最前面;
③當(dāng)0<x<1時(shí),丁走在最前面,當(dāng)x>1時(shí),丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號(hào)為(把正確結(jié)論的序號(hào)都填上,多填或少填均不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線是平面內(nèi)與兩個(gè)定點(diǎn), 的距離之積等于的點(diǎn)的軌跡.給出下列命題:

①曲線過坐標(biāo)原點(diǎn);

②曲線關(guān)于坐標(biāo)軸對(duì)稱;

③若點(diǎn)在曲線上,則的周長有最小值;

④若點(diǎn)在曲線上,則面積有最大值

其中正確命題的個(gè)數(shù)為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙、丙、丁4個(gè)學(xué)生課余參加學(xué)校社團(tuán)文學(xué)社與街舞社的活動(dòng),每人參加且只能參加一個(gè)社團(tuán)的活動(dòng),且參加每個(gè)社團(tuán)是等可能的.
(1)求文學(xué)社和街舞社都至少有1人參加的概率;
(2)求甲、乙同在一個(gè)社團(tuán),且丙、丁不同在一個(gè)社團(tuán)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案