【題目】如圖,在四棱錐中,,,,,,平面平面,二面角為.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析(2)
【解析】
(1)證明平面可得,且為二面角的平面角,計算出,可根據(jù)勾股定理得出,可得平面.
(2)建立空間坐標系,求出平面的法向量,則為直線與平面所成角的正弦值.
解:(1)因為平面平面
平面平面,面,.
所以平面,
因為平面,所以,
又因為,
所以即為二面角的平面角,所以,
又因為在中,,,由余弦定理得,
所以,所以,
又因為平面,平面,所以,
又因為,所以平面.
(2)在平面內(nèi)過點作.垂足為,
因為平面平面,平面平面,所以平面,以為坐標原點,建立如圖所示的空間直角坐標系.
因為,,,,
所以,,,,
,,,
設(shè)平面的法向量為,
所以,即,
取,則平面的一個法向量為.
記直線與平面所成角為,則,
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 288種 B. 144種 C. 720種 D. 360種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)研究函數(shù)的單調(diào)性;
(2)研究函數(shù)的零點個數(shù)情況,并指出對應(yīng)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線交橢圓于、兩點,且線段的中點為,直線與橢圓交于、兩點
(1)求直線與直線斜率的乘積;
(2)若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面ABCD,底面ABCD是等腰梯形,,.
(1)證明:平面PAC;
(2)若,,設(shè),且,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》的盈不足章第19個問題中提到:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里.良馬初日行一百九十三里,日增一十三里.駑馬初日行九十七里,日減半里…”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去.已知長安和齊的距離是3000里.良馬第一天行193里,之后每天比前一天多行13里.駑馬第一天行97里,之后每天比前一天少行0.5里…”試問前4天,良馬和駑馬共走過的路程之和的里數(shù)為( 。
A.1235B.1800C.2600D.3000
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別為菱形的邊的中點,將菱形沿對角線折起,使點不在平面內(nèi),則在翻折過程中,以下命題正確的是___________.(寫出所有正確命題的序號)
①平面;②異面直線與所成的角為定值;③在二面角逐漸漸變小的過程中,三棱錐的外接球半徑先變小后變大;④若存在某個位程,使得直線與直線垂直,則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當時,求函數(shù)在點處的切線方程;
(Ⅱ)設(shè)函數(shù)的導(dǎo)函數(shù)是,若不等式對于任意的實數(shù)恒成立,求實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個極值點,,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)在平面直角坐標系中作出的圖象,并寫出不等式的解集.
(2)設(shè)函數(shù),,若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com