函數(shù)f(x)=
x
x2+1
,則
f(2)
f(
1
2
)
+
f(3)
f(
1
3
)
+
f(4)
f(
1
4
)
+…+
f(2009)
f(
1
2009
)
=
 
分析:利用函數(shù)的解析式求出f(
1
x
)
,判斷出函數(shù)具有f(x)=f(
1
x
)
的性質(zhì),求出式子的值.
解答:解:∵f(x)=
x
x2+1

f(
1
x
)=
1
x
(
1
x
)
2
+1
=
x
x2+1

f(x)
f(
1
x
)
=1

f(2)
f(
1
2
)
+
f(3)
f(
1
3
)
+
f(4)
f(
1
4
)
+…+
f(2009)
f(
1
2009
)
=2008
故答案為:2008
點(diǎn)評(píng):本題考查利用函數(shù)的解析式研究函數(shù)具有的特殊性質(zhì),利用性質(zhì)求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
x2+1
,求
f(2)
f(
1
2
)
+
f(3)
f(
1
3
)
+…
f(2011)
f(
1
2011
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x
x2+2(a+2)x+3a
,(x≥1)
能用均值定理求最大值,則需要補(bǔ)充a的取值范圍是
a≥
1
3
a≥
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
x2+1
,則f(
1
a
)
=
a
a2+1
a
a2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)椋?1,1)的函數(shù)f(x)=
xx2+1

(Ⅰ)判斷函數(shù)f(x)奇偶性并加以證明;
(Ⅱ)判斷函數(shù)f(x)的單調(diào)性并用定義加以證明;
(Ⅲ)解關(guān)于x的不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x
x2
   
-1≤x<0
0≤x≤1
,則f(f(-
1
2
))
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案