【題目】設(shè)函數(shù).
(I)當(dāng)a=1時(shí),證明在是增函數(shù);
(Ⅱ)若當(dāng)時(shí),,求a取值范圍.
【答案】(I)見(jiàn)解析(Ⅱ)
【解析】
(Ⅰ)當(dāng)a=1時(shí),求得f′(x)(x>0).令g(x)=ex﹣1﹣x,求出g(x)的導(dǎo)函數(shù),分析g(x)的單調(diào)性,求得g(x)有最小值0,從而可得g(x)≥0,即f′(x)≥0,則f(x)在(0,+∞)是增函數(shù);
(Ⅱ)設(shè)h(x)=f(x+1)=ln(x+1)+ae﹣x﹣a(x>0),求其導(dǎo)函數(shù),得h′(x).令p(x)=ex﹣a(x+1),對(duì)a分類分析p(x)的符號(hào),得到h(x)的單調(diào)性,從而求得滿足f(x+1)>0時(shí)a的取值范圍.
(Ⅰ)當(dāng)a=1時(shí),f′(x)(x>0).
令g(x)=ex﹣1﹣x,g′(x)=ex﹣1﹣1,
由g′(x)=0,可得x=1.
當(dāng)x∈(0,1)時(shí),g′(x)<0,g(x)單調(diào)遞減,
當(dāng)x∈(1,+∞)時(shí),g′(x)>0,g(x)單調(diào)遞增,
∴當(dāng)x=1時(shí),g(x)min=g(1)=0,即g(x)≥0,
∴f′(x)≥0,則f(x)在(0,+∞)是增函數(shù);
(Ⅱ)解:設(shè)h(x)=f(x+1)=ln(x+1)+ae﹣x﹣a(x>0),
h′(x).
令p(x)=ex﹣a(x+1),則p′(x)=ex﹣a.
①當(dāng)a≤1時(shí),p′(x)>e0﹣a=1﹣a≥0,
∴p(x)在(0,+∞)上單調(diào)遞增,
∴p(x)>p(0)=1﹣a≥0.
∴h′(x)>0,
∴h(x)在(0,+∞)上單調(diào)遞增,
則h(x)>h(0)=0,結(jié)論成立;
②當(dāng)a>1時(shí),由p′(x)=0,可得x=lna,
當(dāng)x∈(0,lna)時(shí),p′(x)<0,p(x)單調(diào)遞減,
又p(0)=1﹣a<0,
∴x∈(0,lna)時(shí),p(x)<0恒成立,
即h′(x)<0.
∴x∈(0,lna)時(shí),h(x)單調(diào)遞減,
此時(shí)h(x)<h(0)=0,結(jié)論不成立.
綜上,a≤1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓 的左、右焦點(diǎn)分別為,,短軸的兩端點(diǎn)分別為,,線段,的中點(diǎn)分別為,,且四邊形是面積為8的矩形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)作直線交橢圓于,兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)到點(diǎn), 及到直線的距離都相等,如果這樣的點(diǎn)恰好只有一個(gè),那么實(shí)數(shù)的值是( )
A. B. C. 或 D. 或
【答案】D
【解析】試題分析:由題意知在拋物線上,設(shè),則有,化簡(jiǎn)得,當(dāng)時(shí),符合題意;當(dāng)時(shí),,有,,則,所以選D.
考點(diǎn):1、點(diǎn)到直線的距離公式;2、拋物線的性質(zhì).
【方法點(diǎn)睛】本題考查拋物線的概念、性質(zhì)以及數(shù)形結(jié)合思想,屬于中檔題,到點(diǎn)和直線的距離相等,則的軌跡是拋物線,再由直線與拋物線的位置關(guān)系可求;拋物線的定義是解決物線問(wèn)題的基礎(chǔ),它能將兩種距離(拋物線上的點(diǎn)到到焦點(diǎn)的距離、拋物線上的點(diǎn)到準(zhǔn)線的距離)進(jìn)行等量轉(zhuǎn)化,如果問(wèn)題中涉及拋物線的焦點(diǎn)和準(zhǔn)線,又能與距離聯(lián)系起來(lái),那么用拋物線的定義就能解決.
【題型】單選題
【結(jié)束】
13
【題目】在極坐標(biāo)系中,已知兩點(diǎn), ,則, 兩點(diǎn)間的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(2)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;
(3)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講:已知函數(shù),a為實(shí)數(shù).
(I)當(dāng)a=1時(shí),求不等式的解集;
(II)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性,并指出其單調(diào)區(qū)間;
(2)若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,底面為菱形,且,E為的中點(diǎn).
(1)求證:平面平面;
(2)棱上是否存在點(diǎn)F,使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是 (是參數(shù), ),直線的參數(shù)方程是 (是參數(shù)),曲線與直線有一個(gè)公共點(diǎn)在軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系
(1)求曲線的極坐標(biāo)方程;
(2)若點(diǎn),,在曲線上,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com