己知△ABC的外接圓半徑為R,角A、B、C的對邊分別為a、b、c,且2R(sin2A-sin2C)=(a-b)sin B,那么角C的大小為      

 

【答案】

【解析】

試題分析:由2R(sin2A-sin2C)=(a-b)sinB,根據(jù)正弦定理得a2-c2=(a-b)b=ab-b2,∴cosC==,∴角C的大小為,故填寫

考點:本題主要是考查正弦定理和余弦定理的應用.解三角形問題過程中常需要利用正弦定理和余弦定理完成邊角問題的互化.

點評:解決該試題的關鍵是先根據(jù)正弦定理把2R(sin2A-sin2C)=(a-b)sinB中的角轉(zhuǎn)換成邊可得a,b和c的關系式,再代入余弦定理求得cosC的值,進而可得C.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•深圳模擬)己知△ABC的外接圓半徑為R,角A、B、C的對邊分別為a、b、c,且2R(sin2A-sin2C)=(
2
a-b)sin B,那么角C的大小為
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學 來源:深圳模擬 題型:填空題

己知△ABC的外接圓半徑為R,角A、B、C的對邊分別為a、b、c,且2R(sin2A-sin2C)=(
2
a-b)sin B,那么角C的大小為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省仙桃市沔州中學高三(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:填空題

己知△ABC的外接圓半徑為R,角A、B、C的對邊分別為a、b、c,且2R(sin2A-sin2C)=(a-b)sin B,那么角C的大小為   

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省中山一中、深圳市寶安中學高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

己知△ABC的外接圓半徑為R,角A、B、C的對邊分別為a、b、c,且2R(sin2A-sin2C)=(a-b)sin B,那么角C的大小為   

查看答案和解析>>

同步練習冊答案