下列命題中是真命題的是


  1. A.
    ?x0∈R,數(shù)學(xué)公式≤0
  2. B.
    ?x∈R(2,+∞),2x>x2
  3. C.
    若x>1,則x2>x
  4. D.
    若x<y,則x2<y2
C
分析:正確掌握冪函數(shù)、指數(shù)函數(shù)的性質(zhì),及實(shí)數(shù)比較大小的方法
解答:∵?x∈R,2x>0,∴A×;
∵?3∈(2,∞),而23=8<32=9,∴B×;
∵x2-x=x(x-1)>0,x>1或x<0,∴x>1,則x2>x,∴C正確;
∵舉反例-2<-1,而(-2)2>(-1)2,∴D×.
故選C
點(diǎn)評(píng):除了利用函數(shù)的性質(zhì)比較實(shí)數(shù)的大小,還常用作差法與反例來判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是真命題的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中是真命題的是( 。
A.?θ∈[0,π),?α∈R使得直線ax+y+1=0的傾斜角為θ
B.曲線C:ax2+by2=c表示雙曲線的充要條件是ab<0
C.到兩定點(diǎn)(-2,4),(4,-4)距離和為12的點(diǎn)的軌跡是橢圓
D.到兩定點(diǎn)(-2,0),(2,0)距離差的絕對(duì)值為4的點(diǎn)的軌跡是雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年重慶一中高二(上)期末數(shù)學(xué)模擬試卷5(解析版) 題型:選擇題

若a,b是異面直線,a?α,b?β,α∩β=l,則下列命題中是真命題的為( )
A.l與a、b分別相交
B.l與a、b都不相交
C.l至多與a、b中的一條相交
D.l至少與a、b中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省紹興市魯迅中學(xué)高三適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若a,b是異面直線,a?α,b?β,α∩β=l,則下列命題中是真命題的為( )
A.l與a、b分別相交
B.l與a、b都不相交
C.l至多與a、b中的一條相交
D.l至少與a、b中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年黑龍江省雙鴨山一中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

若a,b是異面直線,a?α,b?β,α∩β=l,則下列命題中是真命題的為( )
A.l與a、b分別相交
B.l與a、b都不相交
C.l至多與a、b中的一條相交
D.l至少與a、b中的一條相交

查看答案和解析>>

同步練習(xí)冊(cè)答案