已知函數(shù)對任意都滿足,且,數(shù)列滿足:,.
(Ⅰ)求及的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若,試問數(shù)列是否存在最大項(xiàng)和最小項(xiàng)?若存在,求出最大項(xiàng)和最小項(xiàng);若不存在,請說明理由.
(Ⅰ),,(Ⅱ),(Ⅲ)當(dāng),即時,的最大項(xiàng)為.當(dāng),即時,的最小項(xiàng)為.
解析試題分析:(Ⅰ)對應(yīng)抽象函數(shù),一般方法為賦值法. 在中,取,得,在中,取,得,(Ⅱ)在中,令,,得,即.所以是等差數(shù)列,公差為2,又首項(xiàng),所以,.(Ⅲ)研究數(shù)列是否存在最大項(xiàng)和最小項(xiàng),關(guān)鍵看通項(xiàng)公式的特征.令,則,顯然,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/d/sm3s51.png" style="vertical-align:middle;" />,所以當(dāng),即時,的最大項(xiàng)為.當(dāng),即時,的最小項(xiàng)為
解:(Ⅰ)在中,取,得,
在中,取,得, 2分
(Ⅱ)在中,令,,
得,即.
所以是等差數(shù)列,公差為2,又首項(xiàng),所以,. 6分
(Ⅲ)數(shù)列存在最大項(xiàng)和最小項(xiàng)
令,則,
顯然,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/d/sm3s51.png" style="vertical-align:middle;" />,
所以當(dāng),即時,的最大項(xiàng)為.
當(dāng),即時,的最小項(xiàng)為. 13分
考點(diǎn):等差數(shù)列,賦值法研究抽象函數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中,為正整數(shù),,,均為常數(shù),曲線在處的切線方程為.
(1)求,,的值;
(2)求函數(shù)的最大值;
(3)證明:對任意的都有.(為自然對數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(a是常數(shù),a∈R)
(1)當(dāng)a=1時求不等式的解集.
(2)如果函數(shù)恰有兩個不同的零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中為常數(shù),.
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)是否存在實(shí)數(shù),使的極大值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),用表示當(dāng)時的函數(shù)值中整數(shù)值的個數(shù).
(1)求的表達(dá)式.
(2)設(shè),求.
(3)設(shè),若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,判斷在的單調(diào)性,并用定義證明.
(2)若對任意,不等式 恒成立,求的取值范圍;
(3)討論零點(diǎn)的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com