已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求動(dòng)點(diǎn)M的軌跡C2的方程;
(Ⅲ)過橢圓C1的焦點(diǎn)F2作直線l與曲線C2交于A、B兩點(diǎn),當(dāng)l的斜率為
1
2
時(shí),直線l1上是否存在點(diǎn)M,使AM⊥BM?若存在,求出M的坐標(biāo),若不存在,說(shuō)明理由.
分析:(Ⅰ)由橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
⇒2a2=3b2,x-y+2=0與圓x2+y2=b2相切⇒b2=2,從而可求橢圓C1的方程;
(Ⅱ)由(Ⅰ)知F1(-1,0),F(xiàn)2(1,0)⇒l1:x=-1,設(shè)M(x,y),由|MP|=|MF2|⇒|x-(-1)|=
(x-1)2+y2
化簡(jiǎn)即得點(diǎn)M的軌跡C2的方程為y2=4x.
(Ⅲ)設(shè)A(
y
2
1
4
,y1),B(
y
2
2
4
,y2)
,假設(shè)直線l1:x=-1上存在點(diǎn)M(-1,m),使得AM⊥BM,直線l的方程x-2y-1=0與y2=4x聯(lián)立,得y2-8y-4=0,利用韋達(dá)定理與則
AM
BM
=0
即可求得點(diǎn)M的坐標(biāo).
解答:解:(Ⅰ)∵e=
3
3
,
e2=
c2
a2
=
a2-b2
a2
=
1
3

∴2a2=3b2
∵直線l:x-y+2=0與圓x2+y2=b2相切,
2
2
=b
b=
2
,b2=2

∴a2=3.
∴橢圓C1的方程是
x2
3
+
y2
2
=1
;
(Ⅱ)由(Ⅰ)知F1(-1,0),F(xiàn)2(1,0),所以l1:x=-1,設(shè)M(x,y),
∵|MP|=|MF2|,
|x-(-1)|=
(x-1)2+y2
化簡(jiǎn)得:y2=4x,
∴點(diǎn)M的軌跡C2的方程為y2=4x.
(Ⅲ)∵直線l的方程為x-2y-1=0,代入y2=4x,得y2-8y-4=0.
由韋達(dá)定理得y1+y2=8,y1y2=-4,設(shè)A(
y
2
1
4
,y1),B(
y
2
2
4
,y2)

設(shè)直線l1:x=-1上存在點(diǎn)M(-1,m),使得AM⊥BM,則
AM
BM
=0

(-1-
y
2
1
4
,m-y1)•(-1-
y
2
2
4
,m-y2)=0
,
∴16m2-16m(y1+y2)+4(y12+y22)+y12y22+16y1y2+16=0,
∴m2-8m+16=0,解得m=4,
∴準(zhǔn)線上存在點(diǎn)M(-1,4),使AM⊥BM.
點(diǎn)評(píng):本題考查直線與圓錐曲線的綜合問題,著重考查待定系數(shù)法與定義法求圓錐曲線的方程,難點(diǎn)在于(Ⅲ)直線與圓錐曲線的綜合應(yīng)用,方程組的聯(lián)立,韋達(dá)定理的使用,向量的坐標(biāo)運(yùn)算,復(fù)雜的化簡(jiǎn)與計(jì)算,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(1)求橢圓C1的方程;
(2)已知菱形ABCD的頂點(diǎn)A,C在橢圓C1上,對(duì)角線BD所在的直線的斜率為1.
①當(dāng)直線BD過點(diǎn)(0,
1
7
)時(shí),求直線AC的方程;
②當(dāng)∠ABC=60°時(shí),求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一條準(zhǔn)線方程是x=
25
4
,其左、右頂點(diǎn)分別是A、B;雙曲線C2
x2
a2
-
y2
b2
=1
的一條漸近線方程為3x-5y=0.
(1)求橢圓C1的方程及雙曲線C2的離心率;
(2)在第一象限內(nèi)取雙曲線C2上一點(diǎn)P,連接AP交橢圓C1于點(diǎn)M,連接PB并延長(zhǎng)交橢圓C1于點(diǎn)N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,直線l:y=x+2
2
與以原點(diǎn)為圓心、以橢圓C1的短半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過點(diǎn)F1,且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線C2:x2-
y2
4
=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn),若C1恰好將線段AB三等分,則b2=
0.5
0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•汕頭一模)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,離心率e=
1
2

(1)設(shè)拋物線C2:y2=4x的準(zhǔn)線與x軸交于F1,求橢圓的方程;
(2)設(shè)已知雙曲線C3以橢圓C1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),b是雙曲線C3在第一象限上任意-點(diǎn),問是否存在常數(shù)λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案