【題目】如圖,在底面為正方形的四棱錐中,
平面
,點(diǎn)
,
分別在棱
,
上,且滿足
,
.
(1)證明:平面
;
(2)若,求二面角
的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)在棱上取一點(diǎn)
,使得
,連接
,
,可證明
是平行四邊形,可得
,由線面平行的判定定理可得結(jié)果;(2)以
為坐標(biāo)原點(diǎn)以
為
軸建立空間直角坐標(biāo)系,設(shè)
,利用向量垂直數(shù)量積為零列方程求出平面
的法向量,結(jié)合平面
的一個法向量為
,利用空間向量夾角余弦公式求解即可.
(1)在棱上取一點(diǎn)
,使得
,連接
,
,
因?yàn)?/span>,
,所以
,
所以.又因?yàn)?/span>
,
,所以
,
,
所以是平行四邊形,所以
,
因?yàn)?/span>平面
,
平面
,所以
平面
.
(2)依題意,以為坐標(biāo)原點(diǎn),以
為
軸建立空間直角坐標(biāo)系
,
設(shè),則
,
,
,
所以,
.
設(shè)平面的法向量為
,則
,即
,取
,
則.
又平面
,所以平面
的一個法向量為
,
所以,
又二面角為銳角,所以二面角
的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若正四面體PQMN的頂點(diǎn)分別在給定的四面體ABCD的面上,每個面上恰有一個點(diǎn),那么,( ).
A. 當(dāng)四面體ABCD是正四面體時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN只有一個
B. 當(dāng)四面體ABCD是正四面體時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN不存在
C. 當(dāng)四面體ABCD的三組對棱分別相等時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN只有一個
D. 對任何四面體ABCD,正四面體PQMN都有無數(shù)個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒有命中得0分;在B點(diǎn)命中的概率為
,命中一次記2分,沒有命中得0分,用隨機(jī)變量
表示該選手一次投籃測試的累計得分,如果
的值不低于3分,則認(rèn)為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3次.
(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學(xué)期望.
(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機(jī)構(gòu)針對該市市場占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經(jīng)營情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣甲日接單 | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單 | 2.2 | 2.3 | 10 | 5 | 15 |
(1)據(jù)統(tǒng)計表明,與
之間具有線性相關(guān)關(guān)系.
(ⅰ)請用相關(guān)系數(shù)加以說明:(若
,則可認(rèn)為
與
有較強(qiáng)的線性相關(guān)關(guān)系(
值精確到0.001))
(ⅱ)經(jīng)計算求得與
之間的回歸方程為
.假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤3元,試預(yù)測當(dāng)外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(
值精確到0.01)
(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.
相關(guān)公式:相關(guān)系數(shù),
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對工業(yè)增加值(萬億元)與年份序號
的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù)
,其擬合指數(shù)
;研究人員乙采用函數(shù)
,其擬合指數(shù)
;研究人員丙采用線性函數(shù)
,請計算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)
與擬合指數(shù)
滿足關(guān)系
).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計值,建立關(guān)于
的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).
附:樣本
的相關(guān)系數(shù)
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在地面上同一地點(diǎn)觀測遠(yuǎn)方勻速垂直上升的熱氣球,在上午10點(diǎn)整熱氣球的仰角是,到上午10點(diǎn)20分的仰角變成
.請利用下表判斷到上午11點(diǎn)整時,熱氣球的仰角最接近哪個度數(shù)( )
0.5 | 0.559 | 0.629 | 0.643 | 0.656 | 0.669 | 0.682 | 0.695 | 0.707 | |
0.866 | 0.829 | 0.777 | 0.766 | 0.755 | 0.743 | 0.731 | 0.719 | 0.707 | |
0.577 | 0.675 | 0.810 | 0.839 | 0.869 | 0.900 | 0.933 | 0.966 | 1.0 |
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是20個兩兩不同的正整數(shù),且集合
中有201個不同的元素.求集合
中不同元素個數(shù)的最小可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形與等腰直角三角形
所在的平面互相垂直.
,
,
.
(1)求證:;
(2)求證:平面平面
;
(3)線段上是否存在點(diǎn)
,使
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是的導(dǎo)函數(shù)
的圖象,對于下列四個判斷,其中正確的判斷是( ).
A.在
上是增函數(shù);
B.當(dāng)時,
取得極小值;
C.在
上是增函數(shù)、在
上是減函數(shù);
D.當(dāng)時,
取得極大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com