【題目】若實(shí)數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,則當(dāng)x+2y取得最大值時(shí),的值為________

【答案】2

【解析】

(解法1)因?yàn)閷?shí)數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,所以(x+2y)2+4x2y2-8xy=4,(x+2y)2+4(xy-1)2=8,所以(x+2y)2=8-4(xy-1)2,所以當(dāng)(xy-1)2=0時(shí),xy=1時(shí),x+2y取得最大值,此時(shí)x=,y=所以=2.(解法2)因?yàn)閷?shí)數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,所以(x-2y)2+4x2y2=4,x-2y=2cosθ,xy=sinθ,(x+2y)2=(x-2y)2+8xy=4cos2θ+8sinθ,所以(x+2y)2=-4sin2θ+8sinθ+4,所以當(dāng)sinθ=1時(shí),(x+2y)2取得最大值此時(shí)xy=1,x-2y=0,所以=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率,且經(jīng)過拋物線的焦點(diǎn).若過點(diǎn)的直線斜率不等于零與橢圓交于不同的兩點(diǎn)E、BF之間,

求橢圓的標(biāo)準(zhǔn)方程;

求直線l斜率的取值范圍;

面積之比為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】英國統(tǒng)計(jì)學(xué)家EH.辛普森1951年提出了著名的辛普森悖論,下面這個(gè)案例可以讓我們感受到這個(gè)悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):

法官甲

法官乙

終審結(jié)果

民事庭

行政庭

合計(jì)

終審結(jié)果

民事庭

行政庭

合計(jì)

維持

29

100

129

維持

90

20

110

推翻

3

18

21

推翻

10

5

15

合計(jì)

32

118

150

合計(jì)

100

25

125

記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,則下面說法正確的是

A. ,,B. ,,

C. ,D. ,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上,焦點(diǎn)為,圓O的直徑為

1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;

2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P,且直線l與橢圓C交于兩點(diǎn).記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,的中點(diǎn)為.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國已進(jìn)入新時(shí)代中國特色社會(huì)主義時(shí)期,人民生活水平不斷提高.某市隨機(jī)統(tǒng)計(jì)了城區(qū)若干戶市民十月人均生活支出比九月人均生活支出增加量(記為P元)的情況,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)制成如圖頻率分布直方圖.

1)根據(jù)頻率分布直方圖估算P的平均值;

2)若該市城區(qū)有4戶市民十月人均生活支出比九月人均生活支出分別增加了42元,50元,52元,60元,從這4戶中隨機(jī)抽取2戶,求這2P值的和超過100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價(jià)格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車票價(jià)格.下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則(

A.①反映建議(2),③反映建議(1B.①反映建議(1),③反映建議(2

C.②反映建議(1),④反映建議(2D.④反映建議(1),②反映建議(2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項(xiàng)和為且滿足,為常數(shù),).

1)求;

2)若數(shù)列是等比數(shù)列,求實(shí)數(shù)的值;

3)是否存在實(shí)數(shù),使得數(shù)列滿足:可以從中取出無限多項(xiàng)并按原來的先后次序排成一個(gè)等差數(shù)列?若存在,求出所有滿足條件的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為信號(hào)源點(diǎn),、、是三個(gè)居民區(qū),已知、都在的正東方向上,,的北偏西45°方向上,,現(xiàn)要經(jīng)過點(diǎn)鋪設(shè)一條總光纜直線在直線的上方),并從、分別鋪設(shè)三條最短分支光纜連接到總光纜,假設(shè)鋪設(shè)每條分支光纜的費(fèi)用與其長度的平方成正比,比例系數(shù)為1/,設(shè),(),鋪設(shè)三條分支光纜的總費(fèi)用為(元).

1)求關(guān)于的函數(shù)表達(dá)式;

2)求的最小值及此時(shí)的值.

查看答案和解析>>

同步練習(xí)冊答案