分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值問題;
(2)設出切點坐標,表示出切線方程,得到lnx0-x0+1=0,設t(x)=lnx-x+1,x>0,根據(jù)函數(shù)的單調(diào)性求出a的值即可;
(3)通過討論a的范圍,求出函數(shù)的單調(diào)性,結(jié)合函數(shù)h(x)=f(x)-g(2x)有且只有兩個不同的零點,求出a的范圍即可.
解答 解:(1)由題意,$f(x)=lnx-\frac{1}{2}{x^2}$,x>0,
∴$f'(x)=\frac{1}{x}-x=-\frac{(x-1)(x+1)}{x}$,
令f'(x)=0,x=1,…(2分)
x | (0,1) | 1 | (1,+∞) |
f'(x) | + | 0 | - |
f(x) | ↗ | $-\frac{1}{2}$ | ↘ |
點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想,是一道綜合題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 32 | B. | 16 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②③ | B. | ①③④ | C. | ②④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{11}$ | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com