已知向量數(shù)學公式=(sin2x,cos2x),數(shù)學公式=(cos數(shù)學公式,sin數(shù)學公式),函數(shù)f(x)=數(shù)學公式+2a(其中a為實常數(shù))
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

解:(1)f(x)=+2a=(sin2x,cos2x)•(cos,sin
=
∴f(x)的最小正周期T=
(2)由2kπ+≤2x+

∴f(x)的單調(diào)遞減區(qū)間是:
分析:求出f(x)=+2a的表達式,化簡為一個角的一個三角函數(shù)的形式,然后求其最小正周期,求其單調(diào)減區(qū)間.
點評:本題考查三角函數(shù)的周期性及其求法,向量數(shù)乘的運算及其幾何意義,復合三角函數(shù)的單調(diào)性,考查計算能力,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(理科)已知向量
a
=(sin2
π
6
x,cos2
π
6
x
),
b
=(sin2
π
6
x,-cos2
π
6
x
),g(x)=
a
b

(Ⅰ)求函數(shù)g(x)的解析式,并求其單調(diào)增區(qū)間;
(Ⅱ)若集合M={f(x)丨f(x)+f(x+2)=f(x+1),x∈R},試判斷g(x)與集合M的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos(x+
π
8
),sin2(x+
π
8
))
b
=(sin(x+
π
8
),1)
,函數(shù)f(x)=2
a
b
-1

(I)求函數(shù)f(x)的解析式,并求其最小正周期;
(II)求函數(shù)y=f(-
1
2
x)
圖象的對稱中心坐標與對稱軸方程和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)已知向量
a
=(sinx,1),
b
=(1,sin(x+
π
2
))
,設f(x)=
a
b

(1)求f(x)的單調(diào)遞增區(qū)間及最小正周期.
(2)若f(α)=
3
4
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源:遼寧省大連市、沈陽市2012屆高三第二次聯(lián)合考試數(shù)學文科試題 題型:044

已知向量m=(sin2+,sinx),n=(cos2x-sin2x,2sinx),函數(shù)f(x)=m·n

(Ⅰ)求函數(shù)f(x)的最小正周期;

(Ⅱ)若,求函數(shù)f(x)值域.

查看答案和解析>>

同步練習冊答案