已知直線l:y=ax+1-a(a∈R).若存在實(shí)數(shù)a使得一條曲線與直線l有兩個(gè)不同的交點(diǎn),且以這兩個(gè)交點(diǎn)為端點(diǎn)的線段長(zhǎng)度恰好等于|a|,則稱此曲線為直線l的“絕對(duì)曲線”.下面給出四條曲線方程:①y="-2" |x-1|;②y=;③(x-1)2+(y-1)2=1;④x2+3y2=4;則其中直線l的“絕對(duì)曲線”有

A.①④             B.②③             C.②④             D.②③④

 

【答案】

D

【解析】

試題分析:根據(jù)題意,由于直線l:y=ax+1-a(a∈R).若存在實(shí)數(shù)a使得一條曲線與直線l有兩個(gè)不同的交點(diǎn),且以這兩個(gè)交點(diǎn)為端點(diǎn)的線段長(zhǎng)度恰好等于|a|,則稱此曲線為直線l的“絕對(duì)曲線”,那么對(duì)于選項(xiàng)①y="-2" |x-1|;與l:y=ax+1-a聯(lián)立方程組,由于解方程可知不滿足題意,由于②y=與l:y=ax+1-a聯(lián)立方程組可知弦長(zhǎng)為|a|成立。;同理對(duì)于③(x-1)2+(y-1)2=1;④x2+3y2=4;分別加以驗(yàn)證可知,那么能滿足題意的曲線有②③④,故選D.

考點(diǎn):直線與圓錐曲線的交點(diǎn)

點(diǎn)評(píng):主要是考查了直線與圓錐曲線的 位置關(guān)系的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)a>0,如圖,已知直線l:y=ax及曲線C:y=x2,C上的點(diǎn)Q1的橫坐標(biāo)為a1(0<a1<a).從C上的點(diǎn)Qn(n≥1)作直線平行于x軸,交直線l于點(diǎn)Pn+1,再?gòu)狞c(diǎn)Pn+1作直線平行于y軸,交曲線C于點(diǎn)Qn+1.Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
(Ⅰ)試求an+1與an的關(guān)系,并求{an}的通項(xiàng)公式;
(Ⅱ)當(dāng)a=1,a1
1
2
時(shí),證明
n
k=1
(ak-ak+1)ak+2
1
32
;
(Ⅲ)當(dāng)a=1時(shí),證明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=ax+b,其中實(shí)數(shù)a,b∈{-1,1,2}.
(Ⅰ)求可構(gòu)成的不同的直線l的條數(shù);
(Ⅱ)求直線l:y=ax+b與圓x2+y2=1沒有公共點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=ax+1-a(a∈R).若存在實(shí)數(shù)a使得一條曲線與直線l有兩個(gè)不同的交點(diǎn),且以這兩個(gè)交點(diǎn)為端點(diǎn)的線段長(zhǎng)度恰好等于|a|,則稱此曲線為直線l的“絕對(duì)曲線”.下面給出四條曲線方程:①y=-2|x-1|;②y=x2;③(x-1)2+(y-1)2=1;④x2+3y2=4;則其中直線l的“絕對(duì)曲線”有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=ax+1與雙曲線C:3x2-y2=1相交于A、B兩點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)當(dāng)實(shí)數(shù)a取何值時(shí),以線段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=ax+1-a(a∈R),若存在實(shí)數(shù)a使得一條曲線與直線l有兩個(gè)不同的交點(diǎn),且以這兩個(gè)交點(diǎn)為端點(diǎn)的線段的長(zhǎng)度恰好等于|a|,則稱此曲線為直線l的“絕對(duì)曲線”.下面給出的三條曲線方程:
①y=-2|x-1|;
②(x-1)2+(y-1)2=1;
③x2+3y2=4.
其中直線l的“絕對(duì)曲線”有
 
.(填寫全部正確選項(xiàng)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案