【題目】已知f(x)=x26x+5. (Ⅰ)求 的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.
【答案】解:(Ⅰ) f(a)+f(3)=(a26a+5)+(326×3+5)=a26a+1
(Ⅱ)解法一:
因?yàn)閒(x)=x26x+5=(x3)24
又因?yàn)閤∈[2,6],所以1≤x3≤3,所以0≤(x3)2≤9,
得4≤(x3)24≤5.
所以當(dāng)x∈[2,6]時(shí),f(x)的值域是[4,5].
解法二:
因?yàn)楹瘮?shù)f(x)圖象的對(duì)稱軸 ,
所以函數(shù)f(x)在區(qū)間[2,3]是減函數(shù),在區(qū)間[3,6]是增函數(shù).
所以x∈[2,6]時(shí), .
又因?yàn)閒(2)=226×2+5=3,f(6)=626×6+5=5
所以當(dāng)x∈[2,6]時(shí)f(x)的值域是[4,5].
【解析】(Ⅰ)利用二次函數(shù)的解析式,直接求 的值;(Ⅱ)解法一:利用配方法f(x)=x26x+5=(x3)24,求出x3整體的范圍,然后求解函數(shù)的值域即可.
解法二:求出函數(shù)f(x)圖象的對(duì)稱軸利用函數(shù)的單調(diào)性求解函數(shù)的值域即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a為常數(shù),函數(shù)f(x)=xlnx﹣ ax2 .
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的最小值;
(2)若f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2)
①求實(shí)數(shù)a的取值范圍;
②求證:x1x2>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=logax(a>0且a≠1)在區(qū)間[1,2]上的最大值與函數(shù)g(x)=﹣ 在區(qū)間[1,2]上的最大值互為相反數(shù).
(1)求a的值;
(2)若函數(shù)F(x)=f(x2﹣mx﹣m)在區(qū)間(﹣∞,1﹣ )上是減函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,給出下列四個(gè)命題: ①對(duì)角線AC1被平面A1BD和平面B1 CD1三等分;
②正方體的內(nèi)切球、與各條棱相切的球、外接球的表面積之比為1:2:3;
③以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積都是 ;
④正方體與以A為球心,1為半徑的球在該正方體內(nèi)部部分的體積之比為6:π
其中正確命題的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿足方程(x﹣2)2+(y﹣2)2=1.
(1)求 的取值范圍;
(2)求|x+y+l|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)a∈R,函數(shù) 是R上的奇函數(shù). (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)x∈(1,1)時(shí),求滿足不等式f(1m)+f(1m2)<0的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程表示的直線傾斜角為135°的是( )
A.y=x﹣1
B.y﹣1= (x+2)
C. + =1
D. x+2y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg (a>0)為奇函數(shù),函數(shù)g(x)= +b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,討論方徎g(x)=ln|x|實(shí)數(shù)根的個(gè)數(shù);
(Ⅲ)當(dāng)x∈[ , ]時(shí),關(guān)于x的不等式f(1﹣x)≤log(x)有解,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,(x>0且a≠1)的圖象經(jīng)過(guò)點(diǎn)(﹣2,3).
(Ⅰ)求a的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;
(Ⅱ)若f(x)在區(qū)間(m,m+1)上是單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com