本題滿分14分)已知函數(shù),,其中.w.w.w.k.s.5.u.c.o.m
(I)設(shè)函數(shù).若在區(qū)間上不單調(diào),求的取值范圍;
(II)設(shè)函數(shù) 是否存在,對(duì)任意給定的非零實(shí)數(shù),存在惟一的非零實(shí)數(shù)(),使得成立?若存在,求的值;若不存在,請(qǐng)說明理由.
解析:(I)因,,因在區(qū)間上不單調(diào),所以在上有實(shí)數(shù)解,且無重根,由得 w.w.w.k.s.5.u.c.o.m
,令有,記則在上單調(diào)遞減,在上單調(diào)遞增,所以有,于是,得,而當(dāng)時(shí)有在上有兩個(gè)相等的實(shí)根,故舍去,所以;w.w.w.k.s.5.u.c.o.m
(II)當(dāng)時(shí)有;
當(dāng)時(shí)有,因?yàn)楫?dāng)時(shí)不合題意,因此,
下面討論的情形,記A,B=()當(dāng)時(shí),在上單調(diào)遞增,所以要使成立,只能且,因此有,()當(dāng)時(shí),在上單調(diào)遞減,所以要使成立,只能且,因此,綜合()();
當(dāng)時(shí)A=B,則,即使得成立,因?yàn)?IMG height=27 src='http://thumb.zyjl.cn/pic1/img/20090703/20090703085813032.gif' width=40>在上單調(diào)遞增,所以的值是唯一的;
同理,,即存在唯一的非零實(shí)數(shù),要使成立,所以滿足題意.w.w.w.k.s.5.u.c.o.m
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省高一第一次階段練習(xí)數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知全集,集合,,求:
(1)及;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知四邊形滿足∥,,是的中點(diǎn),將沿著翻折成,使面面,為的中點(diǎn).
(Ⅰ)求四棱錐的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省分校高三10月學(xué)習(xí)質(zhì)量診斷文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知,且.
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間及最大值,并指出取得最大值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)文卷 題型:解答題
(本題滿分14分)
已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com