6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+5,(x<0)}\\{{x}^{2}-3x+2,(x≥0)}\end{array}\right.$,則f[f(-2)]=0.

分析 直接利用分段函數(shù)的解析式由里及外逐步求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{2x+5,(x<0)}\\{{x}^{2}-3x+2,(x≥0)}\end{array}\right.$,
則f[f(-2)]=f(-4+5)=f(1)=1-3+2=0.
故答案為:0.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.過(guò)直線l:y=x上的點(diǎn)P(2,2)作直線m,若直線l、m與x軸圍成的三角形的面積為2,則直線m的方程為x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知a∈R.函數(shù)f(x)=-x3+3x+a.
(1)求函數(shù)f(x)的數(shù)值,并作出其草圖.
(2)當(dāng)a為何值時(shí),f(x)=0解有兩個(gè)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.過(guò)點(diǎn)$A(1,\sqrt{3})$且與圓x2+y2=4相切的直線方程是x+$\sqrt{3}y-4=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(α)=$\frac{sin(π-α)cos(2π-α)sin(\frac{π}{2}-α)}{cos(-π-α)cos(\frac{π}{2}-α)}$
(1)化簡(jiǎn)f(α);
(2)當(dāng)α=$\frac{π}{3}$時(shí),求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)-1<p<1,f(x)=loga$\frac{1+2x}{1-2x}$+loga$\frac{1-2x}{2x-p}$(其中a>0,且a≠1)
(1)求f(x)的定義域;
(2)求證:函數(shù)f(x)無(wú)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知圓C:(x-1)2+(y-2)2=25,直線l:my-x+3-m=0,當(dāng)直線l被圓C截得的弦最短時(shí)的m的值是( 。
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列{an}的前n項(xiàng)和Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),則S15=(  )
A.-29B.29C.30D.-30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某高速公路收費(fèi)站入口處的安全標(biāo)識(shí)墩如圖1所示,墩的上半部分是正四棱錐P-EFGH,下半部分是長(zhǎng)方體ABCD-EFGH,圖2、圖3分別是該標(biāo)識(shí)墩的正視圖和俯視圖.

求:
(1)畫(huà)出該標(biāo)識(shí)墩的側(cè)視圖;
(2)計(jì)算該標(biāo)識(shí)墩的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案