【題目】若 是兩條不同的直線, 是三個(gè)不同的平面,則下列為真命題的是( )
A.若 ,則
B.若 ,則
C.若 ,則
D.若 ,則
【答案】C
【解析】?jī)蓚(gè)平面垂直,一個(gè)平面內(nèi)的直線不一定垂直于另一個(gè)平面,所以A不正確;兩個(gè)平面平行,兩個(gè)平面內(nèi)的直線不一定平行,所以B不正確;垂直于同一平面的兩個(gè)平面不一定垂直,可能相交,也可能平行,所以D不正確;根據(jù)面面垂直的判定定理知C正確. 所以答案是:C.
【考點(diǎn)精析】本題主要考查了直線與平面平行的性質(zhì)和平面與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡(jiǎn)記為:線面平行則線線平行;判斷兩平面平行的方法有三種:用定義;判定定理;垂直于同一條直線的兩個(gè)平面平行才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數(shù)列,數(shù)列{bn}滿足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn) 的動(dòng)直線與圓 相交于 兩點(diǎn).
(1)求圓 的方程;
(2)當(dāng) 時(shí),求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體 的棱線長(zhǎng)為 ,線段 上有兩個(gè)動(dòng)點(diǎn) , ,且 ,則下列結(jié)論中錯(cuò)誤的是( ).
A.
B. 平面
C.三棱錐 的體積為定值
D. 的面積與 的面積相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點(diǎn)E落在邊BC上(即點(diǎn)P),則當(dāng)AD取最小值時(shí),邊AF的長(zhǎng)是;此時(shí)四面體F﹣ADP的外接球的半徑是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到圖2中△A1BE的位置,得到四棱錐A1﹣BCDE.
(Ⅰ) 證明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角(銳角)的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com