分析 (Ⅰ)由△ABF2的周長為8求得a,然后結合${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$求得b點的值,則橢圓方程可求;
(Ⅱ)設出N的坐標,利用兩點間的距離公式得到|MN|關于N的縱坐標的函數(shù),然后分類求出橢圓上動點N與M點距離的最大值.
解答 解:(Ⅰ)如圖,由△ABF2的周長為8,得4a=8,即a=2.
∴A1(-2,0),A2(2,0),
設P(x0,y0),則$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{^{2}}=1$.
又${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$,得$\frac{{y}_{0}}{{x}_{0}+2}•\frac{{y}_{0}}{{x}_{0}-2}=-\frac{1}{4}$,
即$\frac{{{x}_{0}}^{2}}{4}+{{y}_{0}}^{2}=1$,∴b2=1.
則橢圓方程為:$\frac{x^2}{4}+{y^2}=1$;
(Ⅱ)設橢圓上N(x0,y0)(-1≤y0≤1),又M(0,m),
∴|MN|=$\sqrt{{{x}_{0}}^{2}+({y}_{0}-m)^{2}}$=$\sqrt{-3{{y}_{0}}^{2}-2m{y}_{0}+{m}^{2}+4}$
=$\sqrt{-3({y}_{0}+\frac{m}{3})^{2}+\frac{4{m}^{2}}{3}+4}$.
若$\frac{m}{3}>1$,即m>3時,則當y0=-1時,|MN|有最大值為m+1,
若0$<\frac{m}{3}≤1$,即0<m≤3時,則當${y}_{0}=-\frac{m}{3}$時,|MN|有最大值為$\sqrt{\frac{4{m}^{2}}{3}+4}$.
點評 本題考查橢圓的簡單性質,考查橢圓方程的求法,訓練了利用配方法求函數(shù)的最值,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{13}$ | C. | 1 | D. | $-\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=\sqrt{x}$ | B. | y=2|x| | C. | y=x2+x+1 | D. | y=2-x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com