【題目】在四棱錐中,底面為矩形,平面,,.以為直徑的球與交于點(異于點),則四面體外接球半徑______.
【答案】
【解析】
過點作的垂線,垂足即為,可求出,易證平面,從而可得到平面平面,分別取,的中點,,可得,平面,由是直角三角形,可知直線上任意一點到三個頂點的距離相等,作線段的垂直平方線,垂足為,交于點,則點為三角形的外接圓圓心,且為四面體外接球球心,由正弦定理可求得三角形的外接圓半徑,即為所求外接球半徑,求解即可.
由題意,平面,底面為矩形,,,
可得,,,
過點作的垂線,垂足即為,
,所以,,
因為,,,所以平面,
則,,即.
因為平面,平面,所以平面平面,
分別取,的中點,,則,平面,
因為是直角三角形,所以直線上任意一點到三個頂點的距離相等,
作線段的垂直平方線,垂足為,交于點,則到三個頂點的距離都相等,即四面體外接球球心為,且的外接圓圓心為,
中,,
由正弦定理,,即的外接圓半徑為,四面體外接球半徑.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E,F分別是棱AA′,CC′的中點,過直線E,F的平面分別與棱BB′、DD′交于M,N,設(shè)BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當(dāng)且僅當(dāng)x=時,四邊形MENF的面積最。
③四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C′﹣MENF的體積V=h(x)為常函數(shù);
以上命題中假命題的序號為( 。
A. ①④B. ②C. ③D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于具有相同定義域D的函數(shù)和,若存在函數(shù)(k,b為常數(shù)),對任給的正數(shù)m,存在相應(yīng)的,使得當(dāng)且時,總有,則稱直線為曲線和的“分漸近線”.給出定義域均為的四組函數(shù)如下:
①,;
②,;
③,;
④,
其中,曲線和存在“分漸近線”的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線: 經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求出曲線、的參數(shù)方程;
(Ⅱ)若、分別是曲線、上的動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若,,求函數(shù)的單調(diào)區(qū)間;
(2)若曲線在點處的切線與直線平行.
①求,的值;
②求實數(shù)的取值范圍,使得對恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M與分別相切于點B,D,圓與分別相切于點C,D.
(1)若,求圓的半徑;(結(jié)果精確到0.1米)
(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當(dāng)多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知位數(shù)滿足下列條件:①各個數(shù)字只能從集合中選取;②若其中有數(shù)字,則在的前面不含,將這樣的位數(shù)的個數(shù)記為;
(1)求、;
(2)探究與之間的關(guān)系,求出數(shù)列的通項公式;
(3)對于每個正整數(shù),在與之間插入個得到一個新數(shù)列,設(shè)是數(shù)列的前項和,試探究能否成立,寫出你探究得到的結(jié)論并給出證明;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調(diào)查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.
(1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).
(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預(yù)算的測試經(jīng)費為10萬元,試問預(yù)算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若,求曲線在處的切線方程;
(2)設(shè)函數(shù)若至少存在一個,使得成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com