已知tan(θ-)=3,
求(1)
(2)sin2θ-2sinθcosθ+1.
【答案】分析:(1)由tan(θ-)=3,求出 tanθ=-2,代入要求的式子 =,運算求得結(jié)果.
(2)根據(jù)同角三角函數(shù)的基本關(guān)系可得 sin2θ-2sinθcosθ+1=,把 tanθ=-2 代入運算求得結(jié)果.
解答:解:(1)∵tan( θ-)=3,∴=3,解得 tanθ=-2.
==-8.
(2)sin2θ-2sinθcosθ+1===
點評:本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的正切公式的應(yīng)用,式子的變形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
3
cosβ=
5
5
,α,β∈(0,π)
(1)求tan(α+β)的值;
(2)求函數(shù)f(x)=
2
sin(x-α)+cos(x+β)
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ為方程x2-3x-3=0兩根.
(1)求tan(α+β)的值;
(2)求sin2(α+β)-3sin(2α+2β)-3cos2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(θ+
π
4
)=-3
,則sin2θ+sinθcosθ-2cos2θ=( 。
A、-
4
3
B、
5
4
C、-
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan
α
2
=2,
求;(1)tan(α+
π
4
)
的值;
(2)
6sinα+cosα
3sinα-2cosα
的值;
(3)3sin2α+4sinαcosα+5cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinα-cosα=
17
13
,α∈(0,π),求tanα的值;
(2)已知tanα=2,求
2sinα-cosα
sinα+3cosα

查看答案和解析>>

同步練習(xí)冊答案