”是“曲線恒在軸下方”的(     )條件

A.充分不必要條件    B.必要不充分條件    C.充要條件         D.既非充分又非必要

 

【答案】

A

【解析】

試題分析:①k=0時(shí),曲線y=-1恒在x軸下方;

②k≠0時(shí),要使曲線y=kx2-kx-1恒在x軸下方,則必須滿足k<0,△= k2+4k<0,解得-4<k<0.

綜上①②可知:曲線y=kx2-kx-1恒在x軸下方的充要條件是-4<k0

因此“-4<k<0”是“曲線y=kx2-kx-1恒在x軸下方”的充分不必要條件

故選A.

考點(diǎn):充分條件的判定

點(diǎn)評:熟練掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.注意分類討論的思想方法的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個(gè)屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點(diǎn)P是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市高三上學(xué)期二輪復(fù)習(xí)定時(shí)練習(xí)(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(Ⅰ)若上的最大值為,求實(shí)數(shù)的值;

(Ⅱ)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)在(Ⅰ)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三最后一次綜合測試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)若上的最大值為,求實(shí)數(shù)的值;

(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)

已知函數(shù),

(1)若上的最大值為,求實(shí)數(shù)的值;

(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省宜春市高三模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)已知函數(shù).

(1)若上的最大值為,求實(shí)數(shù)的值;

(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn)、,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案