已知四棱錐P-ABCD的底面為菱形,且∠ABC=60°,AB=PC=2,AP=BP=
2

(1)求證:平面PAB⊥平面ABCD.
(2)求PD與平面PAB所成角正切值.
(3)求二面角A-PC-D的平面角的余弦值.
考點:與二面角有關(guān)的立體幾何綜合題,平面與平面垂直的判定,點、線、面間的距離計算
專題:
分析:(1)取AB中點E,連PE、CE,證明PE⊥平面ABCD,即可證明平面PAB⊥平面ABCD
(2)以AB中點E為坐標(biāo)原點,EC所在直線為x軸,EB所在直線為y軸,EP所在直線為z軸,建立空間直角坐標(biāo)系.求出PD與平面PAB所成角的正弦值,即可求PD與平面PAB所成角正切值.
(3)建立如圖所示的空間直角坐標(biāo)系.利用兩個平面的法向量的夾角即可得到二面角.
解答: (1)證明:如圖所示,取AB中點E,連PE、CE.
則PE是等腰△PAB的底邊上的中線,∴PE⊥AB.
∵PE=1,CE=
3
,PC=2,即PE2+CE2=PC2
由勾股定理的逆定理可得,PE⊥CE.
又∵AB?平面ABCD,CE?平面ABCD,且AB∩CE=E,
∴PE⊥平面ABCD.
而PE?平面PAB,
∴平面PAB⊥平面ABCD.
(2)解:以AB中點E為坐標(biāo)原點,EC所在直線為x軸,EB所在直線為y軸,EP所在直線為z軸,建立如圖所示的空間直角坐標(biāo)系.
則A(0,-1,0),C(
3
,0,0),D(
3
,-2,0),P(0,0,1),
PD
=(
3
,-2,-1),
EC
=(
3
,0,0),
∴PD與平面PAB所成角的正弦值為
3
3+4+1
3
=
6
4
,
∴PD與平面PAB所成角正切值為
15
5

(3)∵
AC
=(
3
,1,0)
,
PC
=(
3
,0,-1)
,
DC
=(0,2,0)
,
設(shè)
n
=(x,y,z)是平面PAC的一個法向量,
n
AC
=
3
x+y=0
n
PC
=
3
x-z=0

取x=1,可得y=-
3
,z=
3
,即
n
=(1,-
3
,
3

設(shè)
m
=(x,y,z)是平面PCD的一個法向量,
n
DC
=2y=0
n
PC
=
3
x-z=0
,
取x=1,可得y=0,z=
3
.            
m
=(1,0,
3
),
故cos<
m
n
>=
m
n
|
m
||
n
|
=
2
7
7
,
即二面角A-PC-D的平面角的余弦值是
2
7
7
點評:熟練掌握等腰三角形的性質(zhì)、勾股定理的逆定理、線面垂直的判定定理、面面垂直、通過建立空間直角坐標(biāo)系并利用兩個平面的法向量的夾角得到二面角的方法等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1離心率是
2
,過點(
3
,1),且右支上的弦AB過右焦點F.
(1)求雙曲線C的方程;
(2)求弦AB的中點M的軌跡E的方程;
(3)是否存在以AB為直徑的圓過原點O?,若存在,求出直線AB的斜率k的值.若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,E、F分別是PB,CD的中點.
(Ⅰ)證明:PB⊥面AEF
(Ⅱ)求二面角A-PE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=
1
2n
(n∈N),若bn=log 
1
2
an2,且Sn是數(shù)列{bn}的前n項和,當(dāng)n≥5時,試證明anSn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,AB⊥BC,E是A1C的中點,D在線段AC上,并且DE⊥A1C,已知A1A=AB=
2
,BC=2.
(1)求證:A1C⊥平面EDB.
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-2)2=1,過P(1,0),作圓C的切線,切點A,B.
(1)求直線PA、PB的直線方程;
(2)求弦長|AB|;
(3)若Q點是x軸上的動點,過Q點作圓C的切線.切點為G、H,求四邊形GCHQ的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面是邊長為2的菱形,且∠BAD=60°,PA⊥平面ABCD,設(shè)E為BC的中點,二面角P-DE-A為45°.
(1)求點A到平面PDE的距離;
(2)在PA上確定一點F,使BF∥平面PDE;
(3)求異面直線PC與DE所成的角(用反三角函數(shù)表示);
(4)求面PDE與面PAB所成的不大于直二面角的二面角的大。ㄓ梅慈呛瘮(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sinωxsin(ωx+
π
3
)+k(ω>0,k為常數(shù)).
(1)若f(x)的圖象中相鄰兩對稱軸之間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]時,f(x)的最大值是
1
2
,又f(α)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過點P(1,1),傾斜角α=
π
6
,
(1)寫出直線l的參數(shù)方程.
(2)設(shè)l與圓x2+y2=4相交于點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

同步練習(xí)冊答案