分析 令t=x2-3x+2≥0,求得函數(shù)的定義域,且 y=${(\frac{1}{3})}^{t}$,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性值可得結(jié)論.
解答 解:令t=x2-3x+2≥0,求得 x≤1,或 x≥2,
故函數(shù)的定義域?yàn)閧x|x≤1,或 x≥2},且 y=${(\frac{1}{3})}^{t}$,
故本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,
再利用二次函數(shù)的性值可得t在定義域內(nèi)的減區(qū)間為 (-∞,1],
故答案為:(-∞,1].
點(diǎn)評 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)、指數(shù)函數(shù)的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-$\frac{3}{2}$)∪(-1,1) | C. | (-∞,-$\frac{3}{2}$) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x<3y | B. | lnx<lny | C. | ($\frac{1}{4}$)x>($\frac{1}{4}$)y | D. | $\frac{1}{x}$<$\frac{1}{y}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 計(jì)算1+2+3+┅+n | B. | 計(jì)算1+(1+2)+(1+2+3)+┅+(1+2+3+┅+n) | ||
C. | 計(jì)算n! | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 2 | C. | 4 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin({2x-\frac{π}{4}})+1$ | B. | y=2cos2x | C. | y=2sin2x | D. | y=cosx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com