11.已知底面邊長為1,側(cè)棱長為$\sqrt{2}$的正四棱柱的各頂點(diǎn)均在同一個(gè)球面上,則該球的表面積為( 。
A.$\frac{32π}{3}$B.$\frac{4π}{3}$C.D.

分析 畫出圖形,正四棱錐P-ABCD的外接球的球心在它的高PO1上,記為O,求出PO1,OO1,解出球的半徑,求出球的表面積即可.

解答 解:正四棱錐P-ABCD的外接球的球心在它的高PO1上,
記為O,PO=AO=R,PO1=1,OO1=R-1,或OO1=1-R(此時(shí)O在PO1的延長線上),
在Rt△AO1O中,R2=1+(R-1)2得R=1,∴球的表面積S=4πR2=4π.
故選:D.

點(diǎn)評 本題考查了球的表面積,球的內(nèi)接體問題,考查計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=$\frac{x-2}{x+1}$,若對任意實(shí)數(shù)$t∈[{\frac{1}{2},2}]$,都有f(t+a)-f(t-1)>0恒成立,則實(shí)數(shù)a的取值范圍是(-∞,-3)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,b=2${\;}^{-\frac{4}{3}}$,c=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,則下列關(guān)系式中正確的是( 。
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,(a+b+c)(a+b-c)=3ab,且acosB=bcosA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知對k∈R,直線y-kx-1=0與橢圓$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(1,2]B.[1,2)C.[1,2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線l過拋物線y2=2px(p>0)的焦點(diǎn),且交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于C點(diǎn),已知|AF|=3,$\overrightarrow{CB}$=3$\overrightarrow{BF}$,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x+2)的定義域?yàn)閇-1,2],則f(2x)的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,2]B.[2,16]C.[0,2]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,2)B.$(-∞,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.“雞兔同籠”是我國隋朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》中的一個(gè)有趣而具有深遠(yuǎn)影響的題目:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”請畫出一個(gè)解決這個(gè)問題的程序框圖.

查看答案和解析>>

同步練習(xí)冊答案