1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{({\frac{1}{2}})^x}+1,x≥1\\ \frac{3x}{2},0<x<1\end{array}$,若函數(shù)g(x)=f(x)-k有兩不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(1,$\frac{3}{2}$).

分析 函數(shù)g(x)=f(x)-k有兩個(gè)不同零點(diǎn)可以轉(zhuǎn)化為函數(shù)y=f(x)的圖象與函數(shù)y=k的圖象的有兩個(gè)交點(diǎn),作出兩函數(shù)圖象,由圖象易得結(jié)果.

解答 解:如圖,在同一坐標(biāo)系中作出函數(shù)y=f(x)與y=k的圖象,由圖象易知當(dāng)$1<k<\frac{3}{2}$時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn).

故答案為:(1,$\frac{3}{2}$).

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)的存在性.利用數(shù)形結(jié)合的思想方法是本題求解的關(guān)鍵.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.兩條直線(xiàn)mx+y-n=0與x+my+1=0平行的充要條件是(  )
A.m=1且n≠1B.m=-1且n≠1
C.m=±1D.$\left\{\begin{array}{l}m=1\\ n≠-1\end{array}\right.$或$\left\{\begin{array}{l}m=-1\\ n≠1\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=2x-3x+4的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若$sinα=-\frac{1}{3}$,則cos(π-2α)=( 。
A.$-\frac{{4\sqrt{2}}}{9}$B.$\frac{{4\sqrt{2}}}{9}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知點(diǎn)C的坐標(biāo)為(1,0),A,B是拋物線(xiàn)y2=x上不同于原點(diǎn)O的相異的兩個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}=0$.
(1)求證:點(diǎn)A,C,B共線(xiàn);
(2)若$\overrightarrow{AQ}=λ\overrightarrow{QB}({λ∈R})$,當(dāng)$\overrightarrow{OQ}•\overrightarrow{AB}=0$時(shí),求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.借助計(jì)算器用二分法求方程2x+3x=7的近似解x0=1.43(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)理科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個(gè)理科班全部110人中隨機(jī)抽取1人,成績(jī)?yōu)閮?yōu)秀的概率為$\frac{3}{11}$.
優(yōu)秀非優(yōu)秀合計(jì)
甲班10
乙班30
合計(jì)110
(1)請(qǐng)完成右面的列聯(lián)表,根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認(rèn)為成績(jī)與班級(jí)有關(guān)系?(2)在甲、乙兩個(gè)理科班優(yōu)秀的學(xué)生中隨機(jī)抽取兩名學(xué)生,用ξ表示抽得甲班的學(xué)生人數(shù),求ξ的分布列.
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+c})({b+d})({a+b})({c+d})}}$
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,則$z=\frac{y+1}{x+1}$的取值范圍是( 。
A.[0,+∞)B.$[\frac{1}{2},2]$C.$[\frac{5}{4},2]$D.$[0,\frac{4}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知定義:在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱(chēng)數(shù)列{an}為等方差數(shù)列,下列判斷:
①{(-1)n}是“等方差數(shù)列”;
②若{an}是“等方差數(shù)列”,則數(shù)列{${a}_{n}^{2}$}是等差數(shù)列;
③若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)列;
④若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N*,k為常數(shù))可能也是“等方差數(shù)列”.
其中正確的結(jié)論是①②③④.(寫(xiě)出所有正確結(jié)論的編號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案