【題目】已知橢圓的焦距為2,過點.

1)求橢圓的標準方程;

2)設(shè)橢圓的右焦點為F,定點,過點F且斜率不為零的直線l與橢圓交于A,B兩點,以線段AP為直徑的圓與直線的另一個交點為Q,證明:直線BQ恒過一定點,并求出該定點的坐標.

【答案】1;(2)證明見解析,.

【解析】

1)根據(jù)題意列方程組,求解,,即可.

2)設(shè),因為直線的斜率不為零,令的方程為:,與橢圓方程聯(lián)立,得到,,由題意可知,,則,確定的方程,由橢圓的對稱性,則定點必在軸上,所以令,求解,即可.

1)由題知 解得,,

所以橢圓的方程為;

2)設(shè)因為直線的斜率不為零,令的方程為:,

,

,,

因為以為直徑的圓與直線的另一個交點為,所以,則,

,故的方程為:

由橢圓的對稱性,則定點必在軸上,所以令,則

,

,,

所以,

故直線恒過定點,且定點為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直四棱柱的底面ABCD是菱形,,E上任意一點.

1)求證:平面平面

2)設(shè),當E的中點時,求點E到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù).

(Ⅰ)當時,對于任意的,求的最小值;

(Ⅱ)若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,已知,,,,平面平面的中點,連接.

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,右表是對 100 輛新車模型在一個耗油單位內(nèi)行車里程(單位:公里)的測試結(jié)果.

(Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

(Ⅱ)用分層抽樣的方法從行車里程在區(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在[40,42)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求的極值;

(2)若,都有成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,.

(1)證明:;

(2)若,,,求二面角的余弦值的絕對值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片中,,,在線段上取一點,沿著過點的直線將矩形右下角折起,使得右下角頂點恰好落在矩形的左邊邊上.設(shè)折痕所在直線與交于點,記折痕的長度為,翻折角

(1)探求的函數(shù)關(guān)系,推導出用表示的函數(shù)表達式;

(2)設(shè)的長為,求的取值范圍;

(3)確定點在何處時,翻折后重疊部分的圖形面積最小.

查看答案和解析>>

同步練習冊答案