如圖,在梯形ABCD中,AB∥DC,AB=a,CD=b(a>b),若EF∥AB,EF到CD與AB的距離之比為m∶n,則可算出EF=.試用類比方法,推想出下述問題的結(jié)果,在上面的梯形ABCD中,延長梯形兩腰AD,BC相交于點O,設(shè)△OAB,△OCD的面積分別為S1,S2,EF∥AB,且EF到CD與AB的距離之比為m∶n,則△OEF的面積S0與S1,S2的關(guān)系是

[  ]
A.

S0

B.

S0

C.

D.

答案:D
解析:

面積比等于相似比的平方,選D.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點M在線段EF上.
(1)求證:BC⊥平面ACFE;
(2)當EM為何值時,AM∥平面BDF?證明你的結(jié)論;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點M在線段EF上運動,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,BD與AC相交于O,過O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與
EF
、
CO
共線的向量;
(2)與
EA
相等的向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
(I)求證:BC⊥平面ACFE;
(II)若M為線段EF的中點,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

查看答案和解析>>

同步練習冊答案