【題目】定義 為n個(gè)正數(shù)p1 , p2 , …,pn的“均倒數(shù)”.若已知正數(shù)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為 ,又bn= ,則 + + +…+ =( )
A.
B.
C.
D.

【答案】C
【解析】解:由已知定義,得到 =

∴a1+a2+…+an=n(2n+1)=Sn,

即Sn=2n2+n.

當(dāng)n=1時(shí),a1=S1=3.

當(dāng)n≥2時(shí),an=Sn﹣Sn1=(2n2+n)﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.

當(dāng)n=1時(shí)也成立,

∴an=4n﹣1;

∵bn= =n,

= = ,

+ + +…+ =1﹣ + +…+ =1﹣ = ,

+ + +…+ =

所以答案是:C

【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐S﹣ABCD的底面ABCD是正方形,各側(cè)棱長(zhǎng)與底面的邊長(zhǎng)均相等,M為SA的中點(diǎn),則直線BM與SC所成的角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .用反證法證明方程f(x)=0 沒(méi)有負(fù)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=3x2﹣2x,數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn 對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若c(acosB﹣ b)=a2﹣b2
(1)求角A;
(2)若a= ,求c﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若a=0時(shí),求函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)﹣f(a)=f′(x0)(b﹣a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點(diǎn)”.那么函數(shù)f(x)=x3﹣3x在區(qū)間[﹣2,2]上的“中值點(diǎn)”為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游公司為甲,乙兩個(gè)旅游團(tuán)提供四條不同的旅游線路,每個(gè)旅游團(tuán)可任選其中一條旅游線路.
(1)求甲、乙兩個(gè)旅游團(tuán)所選旅游線路不同的概率;
(2)某天上午9時(shí)至10時(shí),甲,乙兩個(gè)旅游團(tuán)都到同一個(gè)著名景點(diǎn)游覽,20分鐘后游覽結(jié)束即離去.求兩個(gè)旅游團(tuán)在該著名景點(diǎn)相遇的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x﹣2
(Ⅰ)用定義法證明:函數(shù)f(x)在區(qū)間(﹣∞,1]上是減函數(shù);
(Ⅱ)若函數(shù)g(x)=f(x)﹣mx是偶函數(shù),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案