A. | AC⊥BD | B. | △ACD是等邊三角形 | ||
C. | .AB與CD所成的角為60° | D. | AB與平面BCD所成的角為60° |
分析 取BD的中點(diǎn)E,則AE⊥BD,CE⊥BD.根據(jù)線面垂直的判定及性質(zhì)可判斷①的真假;求出AC長后,可以判斷②的真假;求出AB與平面BCD所成的角可判斷③的真假;建立空間坐標(biāo)系,利用向量法,求出AB與CD所成的角,可以判斷④的真假;進(jìn)而得到答案.
解答 解:取BD的中點(diǎn)E,則AE⊥BD,CE⊥BD.?∴BD⊥面AEC.?
∴BD⊥AC,故①正確.?
設(shè)正方形邊長為a,則AD=DC=a,AE=$\frac{\sqrt{2}}{2}$a=EC.
∴AC=a.?
∴△ACD為等邊三角形,故②正確.?
以E為坐標(biāo)原點(diǎn),EC、ED、EA分別為x,y,z軸建立直角坐標(biāo)系,?
則A(0,0,$\frac{\sqrt{2}}{2}$a),B(0,-$\frac{\sqrt{2}}{2}$a,0),D(0,$\frac{\sqrt{2}}{2}$a,0),C( $\frac{\sqrt{2}}{2}$a,0,0).??
$\overrightarrow{AB}$=(0,-$\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a),$\overrightarrow{DC}$=( $\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a,0).
cos<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=$\frac{\frac{1}{2}{a}^{2}}{{a}^{2}}$=$\frac{1}{2}$
∴<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=60°,故③正確.
∠ABD為AB與面BCD所成的角為45°,故④不正確.?
故選:D.
點(diǎn)評 本題考查的知識點(diǎn)是線面垂直的判定與性質(zhì),空間兩點(diǎn)距離,線面夾角,異面直線的夾角,其中根據(jù)已知條件將正方形ABCD沿對角線BD折成直二面角A-BD-C,結(jié)合立體幾何求出相關(guān)直線與直線、直線與平面的夾角,及線段的長是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com