【題目】如圖所示,D是△ABC中,邊BC的中點(diǎn),K為AC與△ABD的外接圓O的交點(diǎn),EK平行于AB且與圓O交于E,若AD=DE,求證:.
【答案】證明見解析
【解析】
如圖所示,連結(jié)DK并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)P,連結(jié)AE,
由AD=DE,得.
由EK∥AB,得∠EKD=∠BPD,
又,
所以∠BPD=∠AKP,故AK=AP.
作PH∥AC,并使PH=PB,連結(jié)HK、BK、BH、DH,
在△PBK與△PHK中,.
由PH∥AC可得,
所以△PBk≌△PHK,故BK=HK.
又由PB=PH,得PD是線段BH的垂直平分線,即有PD⊥BH,.
由D是BC的中點(diǎn),得DC=BD=DH,所以BH⊥HC,故DK∥HC.
再由PH∥KC,得四邊形PKCH為平行四邊形,
所以,即AB+AK=KC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)(i)若恒成立,求的取值范圍;
(i i)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,平面ABC是下底面.M是BB1上的點(diǎn),AB=3,BC=4,AC=5,CC1=7,過三點(diǎn)A、M、C1作截面,當(dāng)截面周長(zhǎng)最小時(shí),截面將三棱柱分成的上、下兩部分的體積比為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)相關(guān)數(shù)據(jù)統(tǒng)計(jì),2019年底全國(guó)已開通基站13萬個(gè),部分省市的政府工作報(bào)告將“推進(jìn)通信網(wǎng)絡(luò)建設(shè)”列入2020年的重點(diǎn)工作,今年一月份全國(guó)共建基站3萬個(gè).
(1)如果從2月份起,以后的每個(gè)月比上一個(gè)月多建設(shè)2000個(gè),那么,今年底全國(guó)共有基站多少萬個(gè).(精確到0.1萬個(gè))
(2)如果計(jì)劃今年新建基站60萬個(gè),到2022年底全國(guó)至少需要800萬個(gè),并且,今后新建的數(shù)量每年比上一年以等比遞增,問2021年和2022年至少各建多少萬個(gè)オ能完成計(jì)劃?(精確到1萬個(gè))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:
①平面;
②四點(diǎn)、、、可能共面;
③若,則平面平面;
④平面與平面可能垂直.其中正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,EA平面ABC,DC∥EA,EA=2DC,F是EB的中點(diǎn).
(1)求證:DC平面ABC;
(2)求證:DF∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1直角三角形ACB中,,,,點(diǎn)為的中點(diǎn),,將沿折起,使面面,如圖2.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,,是軸的正半軸上一點(diǎn),交橢圓于,且,的內(nèi)切圓半徑為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為圓上一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD是矩形,平面平面ABCD,,E是SB的中點(diǎn),M是CD上任意一點(diǎn).
(1)求證:;
(2)若,,平面SAD,求直線BM與平面SAB所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com