【題目】閱讀材料:空間直角坐標(biāo)系O﹣xyz中,過點(diǎn)P(x0,y0,z0)且一個(gè)法向量為=(a,b,c)的平面α的方程為a(x﹣x0)+b(y﹣y0)+c(z﹣z0)=0;過點(diǎn)P(x0,y0,z0)且一個(gè)方向向量為=(u,v,w)(uvw≠0)的直線l的方程為,閱讀上面材料,并解決下面問題:已知平面α的方程為x+2y﹣2z﹣4=0,直線l是兩平面3x﹣2y﹣7=0與2y﹣z+6=0的交線,則直線l與平面α所成角的大小為( )
A. arcsinB. arcsin
C. arcsinD. arcsin
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為了更好提升學(xué)校文化品位,發(fā)揮校園文化的教育功能特舉辦了校園文化建設(shè)方案征集大賽,經(jīng)評委會初評,有兩個(gè)優(yōu)秀方案入選.為了更好充分體現(xiàn)師生的主人翁意識,組委會邀請了100名師生代表對這兩個(gè)方案進(jìn)行登記評價(jià)(登記從高到低依次為),評價(jià)結(jié)果對應(yīng)的人數(shù)統(tǒng)計(jì)如下表:
編號 | 等級 | ||||
1號方案 | 8 | 41 | 26 | 15 | 10 |
2號方案 | 7 | 33 | 20 | 20 | 20 |
(Ⅰ)若從對1號方案評價(jià)為的師生中任選3人,求這3人中至少有1人對1號方案評價(jià)為的概率;
(Ⅱ)在級以上(含級),可獲得2萬元的獎勵,級獎勵萬元,級無獎勵.若以此表格數(shù)據(jù)估計(jì)概率,隨機(jī)請1名師生分別對兩個(gè)方案進(jìn)行獨(dú)立評價(jià),求兩個(gè)方案獲得的獎勵總金額(單位:萬元)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解社會對學(xué)校辦學(xué)質(zhì)量的滿意程度,某學(xué)校決定用分層抽樣的方法從高中三個(gè)年級的家長委員會中共抽取人進(jìn)行問卷調(diào)查,已知高一、高二、高三、的家長委員會分別有人,人,人.
求從三個(gè)年級的家長委員會分別應(yīng)抽到的家長人數(shù);
若從抽到的人中隨機(jī)抽取人進(jìn)行調(diào)查結(jié)果的對比,求這人中至少有一人是高三學(xué)生家長的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的漸近線方程為,拋物線:的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,過的直線交拋物線于兩點(diǎn),為坐標(biāo)原點(diǎn),若向量與的夾角為,則的面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失敗.
晉級成功 | 晉級失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
(1)求圖中的值;
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級成功”與性別有關(guān)?
(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(參考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線與有相同的漸近線,且經(jīng)過點(diǎn),
(1)求雙曲線的方程,并寫出其離心率與漸近線方程;
(2)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求實(shí)數(shù)的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商店出售茶壺和茶杯,茶壺定價(jià)每個(gè)20元,茶杯每個(gè)5元,該商店推出兩種優(yōu)惠辦法:(1)買一個(gè)茶壺贈一個(gè)茶杯;(2)按總價(jià)的92%付款.
某顧客需購買茶壺4個(gè),茶杯若干個(gè)(不少于4個(gè)),若購買茶杯數(shù)x個(gè),付款y(元),分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買同樣多的茶杯時(shí),兩種辦法哪一種更優(yōu)惠。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的偶函數(shù),當(dāng)時(shí),
(1)在給定的坐標(biāo)系中畫出函數(shù)在上的圖像(不用列表);并直接寫出的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com