(本小題滿分15分)設,
(1)當時,求曲線處的切線的斜率;
(2)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對于任意,都有成立,求實數(shù)的取值范圍.

(1)(2)(3)

解析試題分析:(1)當時,,故.                  ……3分
(2)存在,使得成立等價于
,∴
上單調遞減,在上單調遞增,                                    ……6分
,
,
∴滿足的最大整數(shù)為4;                                                          ……8分
(3)對于任意,都有成立,等價于
由(2)知,在上,,
∴在上,恒成立,等價于恒成立,
,則,
∴當時,;當時,
∴函數(shù)上單調遞增,在上單調遞減,
.                                                        ……15分
考點:本小題主要考查導數(shù)的幾何意義的應用和利用導數(shù)解決單調性、最值和恒成立等問題,考查學生綜
合運算所學知識分析問題、解決問題的能力和運算求解能力.
點評:恒成立問題是高考中一個?嫉目键c,恒成立問題一般轉化成最值問題來解決.導數(shù)是研究函數(shù)性
質尤其是單調性、最值問題的有力工具,要靈活運算,但是不要忘記定義域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分))
京廣高鐵于2012年12月26日全線開通運營,次列車在平直的鐵軌上勻速行駛,由于遇到緊急情況,緊急剎車時列車行駛的路程 (單位:)和時間 (單位:)的關系為:.
(1)求從開始緊急剎車至列車完全停止所經過的時間;
(2)求列車正常行駛的速度;
(3)求緊急剎車后列車加速度絕對值的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知二次函數(shù), 滿足的最小值是.(Ⅰ)求的解析式;(Ⅱ)設函數(shù),若函數(shù)在區(qū)間上是單調函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)設函數(shù)f(x)=x3ax2+3x+5(a>0).
(1)已知f(x)在R上是單調函數(shù),求a的取值范圍;
(2)若a=2,且當x∈[1,2]時,f(x)≤m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)定義在實數(shù)R上的函數(shù)y= f(x)是偶函數(shù),當x≥0時,.
(Ⅰ)求f(x)在R上的表達式;
(Ⅱ)求y=f(x)的最大值,并寫出f(x)在R上的單調區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

燕子每年秋天都要從北方飛到南方過冬。研究燕子的科學家發(fā)現(xiàn),兩歲燕子的飛行速度可以表示為函數(shù),單位是,其中表示燕子的耗氧量。
(1)計算:兩歲燕子靜止時的耗氧量是多少個單位?(5分)
(2)當一只兩歲燕子的耗氧量是80個單位時,它的飛行速度是多少?(5分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)
提高過立交橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,成都某立交橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知集合是滿足下列性質的函數(shù)的全體:在定義域內存在,使得成立。
(Ⅰ)函數(shù)是否屬于集合?說明理由;
(Ⅱ)設函數(shù),求的取值范圍;
(Ⅲ)設函數(shù)圖象與函數(shù)的圖象有交點,
證明:函數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)某產品生產廠家根據(jù)以往的生產銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產產品(百臺),其總成本為(萬元),其中固定成本為2.8萬元,并且每生產1百臺的生產成本為2萬元(總成本=固定成本+生產成本).銷售收入(萬元)滿足,假定該產品產銷平衡(即生產的產品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出函數(shù)的解析式;
(2)寫出利潤函數(shù)的解析式(利潤=銷售收入—總成本);
(3)工廠生產多少臺產品時,可使盈利最多?

查看答案和解析>>

同步練習冊答案